ترغب بنشر مسار تعليمي؟ اضغط هنا

A Generalized Asymmetric Dual-front Model for Active Contours and Image Segmentation

56   0   0.0 ( 0 )
 نشر من قبل Da Chen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The Voronoi diagram-based dual-front active contour models are known as a powerful and efficient way for addressing the image segmentation and domain partitioning problems. In the basic formulation of the dual-front models, the evolving contours can be considered as the interfaces of adjacent Voronoi regions. Among these dual-front models, a crucial ingredient is regarded as the geodesic metrics by which the geodesic distances and the corresponding Voronoi diagram can be estimated. In this paper, we introduce a type of asymmetric quadratic metrics dual-front model. The metrics considered are built by the integration of the image features and a vector field derived from the evolving contours. The use of the asymmetry enhancement can reduce the risk of contour shortcut or leakage problems especially when the initial contours are far away from the target boundaries or the images have complicated intensity distributions. Moreover, the proposed dual-front model can be applied for image segmentation in conjunction with various region-based homogeneity terms. The numerical experiments on both synthetic and real images show that the proposed dual-front model indeed achieves encouraging results.

قيم البحث

اقرأ أيضاً

Learning-based approaches for semantic segmentation have two inherent challenges. First, acquiring pixel-wise labels is expensive and time-consuming. Second, realistic segmentation datasets are highly unbalanced: some categories are much more abundan t than others, biasing the performance to the most represented ones. In this paper, we are interested in focusing human labelling effort on a small subset of a larger pool of data, minimizing this effort while maximizing performance of a segmentation model on a hold-out set. We present a new active learning strategy for semantic segmentation based on deep reinforcement learning (RL). An agent learns a policy to select a subset of small informative image regions -- opposed to entire images -- to be labeled, from a pool of unlabeled data. The region selection decision is made based on predictions and uncertainties of the segmentation model being trained. Our method proposes a new modification of the deep Q-network (DQN) formulation for active learning, adapting it to the large-scale nature of semantic segmentation problems. We test the proof of concept in CamVid and provide results in the large-scale dataset Cityscapes. On Cityscapes, our deep RL region-based DQN approach requires roughly 30% less additional labeled data than our most competitive baseline to reach the same performance. Moreover, we find that our method asks for more labels of under-represented categories compared to the baselines, improving their performance and helping to mitigate class imbalance.
98 - Da Chen , Jian Zhu , Xinxin Zhang 2020
Minimal paths are regarded as a powerful and efficient tool for boundary detection and image segmentation due to its global optimality and the well-established numerical solutions such as fast marching method. In this paper, we introduce a flexible i nteractive image segmentation model based on the Eikonal partial differential equation (PDE) framework in conjunction with region-based homogeneity enhancement. A key ingredient in the introduced model is the construction of local geodesic metrics, which are capable of integrating anisotropic and asymmetric edge features, implicit region-based homogeneity features and/or curvature regularization. The incorporation of the region-based homogeneity features into the metrics considered relies on an implicit representation of these features, which is one of the contributions of this work. Moreover, we also introduce a way to build simple closed contours as the concatenation of two disjoint open curves. Experimental results prove that the proposed model indeed outperforms state-of-the-art minimal paths-based image segmentation approaches.
Infrared (IR) image segmentation is essential in many urban defence applications, such as pedestrian surveillance, vehicle counting, security monitoring, etc. Active contour model (ACM) is one of the most widely used image segmentation tools at prese nt, but the existing methods only utilize the local or global single feature information of image to minimize the energy function, which is easy to cause false segmentations in IR images. In this paper, we propose a multi-feature driven active contour segmentation model to handle IR images with intensity inhomogeneity. Firstly, an especially-designed signed pressure force (SPF) function is constructed by combining the global information calculated by global average gray information and the local multi-feature information calculated by local entropy, local standard deviation and gradient information. Then, we draw upon adaptive weight coefficient calculated by local range to adjust the afore-mentioned global term and local term. Next, the SPF function is substituted into the level set formulation (LSF) for further evolution. Finally, the LSF converges after a finite number of iterations, and the IR image segmentation result is obtained from the corresponding convergence result. Experimental results demonstrate that the presented method outperforms the state-of-the-art models in terms of precision rate and overlapping rate in IR test images.
Considering the scarcity of medical data, most datasets in medical image analysis are an order of magnitude smaller than those of natural images. However, most Network Architecture Search (NAS) approaches in medical images focused on specific dataset s and did not take into account the generalization ability of the learned architectures on unseen datasets as well as different domains. In this paper, we address this point by proposing to search for generalizable U-shape architectures on a composited dataset that mixes medical images from multiple segmentation tasks and domains creatively, which is named MixSearch. Specifically, we propose a novel approach to mix multiple small-scale datasets from multiple domains and segmentation tasks to produce a large-scale dataset. Then, a novel weaved encoder-decoder structure is designed to search for a generalized segmentation network in both cell-level and network-level. The network produced by the proposed MixSearch framework achieves state-of-the-art results compared with advanced encoder-decoder networks across various datasets.
Supervised semantic segmentation normally assumes the test data being in a similar data domain as the training data. However, in practice, the domain mismatch between the training and unseen data could lead to a significant performance drop. Obtainin g accurate pixel-wise label for images in different domains is tedious and labor intensive, especially for histopathology images. In this paper, we propose a dual adaptive pyramid network (DAPNet) for histopathological gland segmentation adapting from one stain domain to another. We tackle the domain adaptation problem on two levels: 1) the image-level considers the differences of image color and style; 2) the feature-level addresses the spatial inconsistency between two domains. The two components are implemented as domain classifiers with adversarial training. We evaluate our new approach using two gland segmentation datasets with H&E and DAB-H stains respectively. The extensive experiments and ablation study demonstrate the effectiveness of our approach on the domain adaptive segmentation task. We show that the proposed approach performs favorably against other state-of-the-art methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا