ﻻ يوجد ملخص باللغة العربية
Molecules in diffuse and translucent clouds experience cooling as a result of radiation and less excitation from collisions. However, a rotation around a molecular axis of acetonitrile, CH3CN, cannot be cooled by radiation, causing rotational populations to concentrate at the J = K levels. We aim to search for absorption lines of CH3CN having J = K level concentrations in diffuse and translucent clouds. The JK = 43-33 transition at 73.6 GHz was investigated toward Sgr B2(M) in the Galactic Center region and other sources, using the Nobeyama 45 m telescope. Based on the detected absorption lines toward Sgr B2(M), a radiation temperature of 2.8 +/- 0.5 K, kinetic temperature of 88 +/- 29 K, and column density of (1.35 +/- 0.14) x 10^14 cm-2 were derived for this molecule, revealing extremely concentrated J = K levels due to the lower excitation temperature and the higher kinetic temperature. The absorption lines occurred at a velocity of 64 km s-1. The results confirm that CH3CN with J = K level concentrations exists in the envelope of Sgr B2(M).
Methyl mercaptan (CH3SH) is a known interstellar molecule with abundances high enough that the detection of some of its minor isotopologues is promising. The present study aims at providing accurate spectroscopic parameters for the (13)CH3SH isotopol
We report the first high spatial resolution submillimeter continuum observations of the Sagittarius B2 cloud complex using the Submillimeter Array (SMA). With the subarcsecond resolution provided by the SMA, the two massive star-forming clumps Sgr B2
The giant molecular cloud Sagittarius B2 (hereafter SgrB2) is the most massive region with ongoing high-mass star formation in the Galaxy. In the southern region of the 40-pc large envelope of SgrB2, we encounter the SgrB2(DS) region which hosts more
The gas temperature structure of protoplanetary disks is a key ingredient for interpreting various disk observations and for quantifying the subsequent evolution of these systems. The comparison of low- and mid-$J$ CO rotational lines is a powerful t
We present a survey of far-ultraviolet (FUV; 1150 - 1450 Ang) emission line spectra from 71 planet-hosting and 33 non-planet-hosting F, G, K, and M dwarfs with the goals of characterizing their range of FUV activity levels, calibrating the FUV activi