ترغب بنشر مسار تعليمي؟ اضغط هنا

Enabling Joint Communication and Radar Sensing in Mobile Networks -- A Survey

97   0   0.0 ( 0 )
 نشر من قبل J. Andrew Zhang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Mobile network is evolving from a communication-only network towards the one with joint communication and radio/radar sensing (JCAS) capabilities, that we call perceptive mobile network (PMN). Radio sensing here refers to information retrieval from received mobile signals for objects of interest in the environment surrounding the radio transceivers. In this paper, we provide a comprehensive survey for systems and technologies that enable JCAS in PMN, with a focus on works in the last ten years. Starting with reviewing the work on coexisting communication and radar systems, we highlight their limits on addressing the interference problem, and then introduce the JCAS technology. We then set up JCAS in the mobile network context, and envisage its potential applications. We continue to provide a brief review for three types of JCAS systems, with particular attention to their differences on the design philosophy. We then introduce a framework of PMN, including the system platform and infrastructure, three types of sensing operations, and signals usable for sensing, and discuss required system modifications to enable sensing on current communication-only infrastructure. Within the context of PMN, we review stimulating research problems and potential solutions, organized under eight topics: mutual information, waveform optimization, antenna array design, clutter suppression, sensing parameter estimation, pattern analysis, networked sensing under cellular topology, and sensing-assisted secure communication. This paper provides a comprehensive picture for the motivation, methodology, challenges, and research opportunities of realizing PMN. The PMN is expected to provide a ubiquitous radio sensing platform and enable a vast number of novel smart applications.



قيم البحث

اقرأ أيضاً

Joint radar and communication (JRC) has recently attracted substantial attention. The first reason is that JRC allows individual radar and communication systems to share spectrum bands and thus improves the spectrum utilization. The second reason is that JRC enables a single hardware platform, e.g., an autonomous vehicle or a UAV, to simultaneously perform the communication function and the radar function. As a result, JRC is able to improve the efficiency of resources, i.e., spectrum and energy, reduce the system size, and minimize the system cost. However, there are several challenges to be solved for the JRC design. In particular, sharing the spectrum imposes the interference caused by the systems, and sharing the hardware platform and energy resource complicates the design of the JRC transmitter and compromises the performance of each function. To address the challenges, several resource management approaches have been recently proposed, and this paper presents a comprehensive literature review on resource management for JRC. First, we give fundamental concepts of JRC, important performance metrics used in JRC systems, and applications of the JRC systems. Then, we review and analyze resource management approaches, i.e., spectrum sharing, power allocation, and interference management, for JRC. In addition, we present security issues to JRC and provide a discussion of countermeasures to the security issues. Finally, we highlight important challenges in the JRC design and discuss future research directions related to JRC.
In this paper, we develop a framework for a novel perceptive mobile/cellular network that integrates radar sensing function into the mobile communication network. We propose a unified system platform that enables downlink and uplink sensing, sharing the same transmitted signals with communications. We aim to tackle the fundamental sensing parameter estimation problem in perceptive mobile networks, by addressing two key challenges associated with sophisticated mobile signals and rich multipath in mobile networks. To extract sensing parameters from orthogonal frequency division multiple access (OFDMA) and spatial division multiple access (SDMA) communication signals, we propose two approaches to formulate it to problems that can be solved by compressive sensing techniques. Most sensing algorithms have limits on the number of multipath signals for their inputs. To reduce the multipath signals, as well as removing unwanted clutter signals, we propose a background subtraction method based on simple recursive computation, and provide a closed-form expression for performance characterization. The effectiveness of these methods is validated in simulations.
Beamforming has great potential for joint communication and sensing (JCAS), which is becoming a demanding feature on many emerging platforms such as unmanned aerial vehicles and smart cars. Although beamforming has been extensively studied for commun ication and radar sensing respectively, its application in the joint system is not straightforward due to different beamforming requirements by communication and sensing. In this paper, we propose a novel multibeam framework using steerable analog antenna arrays, which allows seamless integration of communication and sensing. Different to conventional JCAS schemes that support JCAS using a single beam, our framework is based on the key innovation of multibeam technology: providing fixed subbeam for communication and packet-varying scanning subbeam for sensing, simultaneously from a single transmitting array. We provide a system architecture and protocols for the proposed framework, complying well with modern packet communication systems with multicarrier modulation. We also propose low-complexity and effective multibeam design and generation methods, which offer great flexibility in meeting different communication and sensing requirements. We further develop sensing parameter estimation algorithms using conventional digital Fourier transform and 1D compressive sensing techniques, matching well with the multibeam framework. Simulation results are provided and validate the effectiveness of our proposed framework, beamforming design methods and the sensing algorithms.
Joint radar and communication (JRC) technology has become important for civil and military applications for decades. This paper introduces the concepts, characteristics and advantages of JRC technology, presenting the typical applications that have b enefited from JRC technology currently and in the future. This paper explores the state-of-the-art of JRC in the levels of coexistence, cooperation, co-design and collaboration. Compared to previous surveys, this paper reviews the entire trends that drive the development of radar sensing and wireless communication using JRC. Specifically, we explore an open research issue on radar and communication operating with mutual benefits based on collaboration, which represents the fourth stage of JRC evolution. This paper provides useful perspectives for future researches of JRC technology.
Joint communication and radar sensing (JCR) represents an emerging research field aiming to integrate the above two functionalities into a single system, sharing a majority of hardware and signal processing modules and, in a typical case, sharing a s ingle transmitted signal. It is recognised as a key approach in significantly improving spectrum efficiency, reducing device size, cost and power consumption, and improving performance thanks to potential close cooperation of the two functions. Advanced signal processing techniques are critical for making the integration efficient, from transmission signal design to receiver processing. This paper provides a comprehensive overview of JCR systems from the signal processing perspective, with a focus on state-of-the-art. A balanced coverage on both transmitter and receiver is provided for three types of JCR systems, communication-centric, radar-centric, and joint design and optimization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا