ﻻ يوجد ملخص باللغة العربية
We present a transmission spectrum for the Neptune-size exoplanet HD 106315 c from optical to infrared wavelengths based on transit observations from the Hubble Space Telescope/Wide Field Camera 3, K2, and Spitzer. The spectrum shows tentative evidence for a water absorption feature in the $1.1 - 1.7mu$m wavelength range with a small amplitude of 30 ppm (corresponding to just $0.8 pm 0.04$ atmospheric scale heights). Based on an atmospheric retrieval analysis, the presence of water vapor is tentatively favored with a Bayes factor of 1.7 - 2.6 (depending on prior assumptions). The spectrum is most consistent with either enhanced metallicity, high altitude condensates, or both. Cloud-free solar composition atmospheres are ruled out at $>5sigma$ confidence. We compare the spectrum to grids of cloudy and hazy forward models and find that the spectrum is fit well by models with moderate cloud lofting or haze formation efficiency, over a wide range of metallicities ($1 - 100times$ solar). We combine the constraints on the envelope composition with an interior structure model and estimate that the core mass fraction is $gtrsim0.3$. With a bulk composition reminiscent of that of Neptune and an orbital distance of 0.15 AU, HD 106315 c hints that planets may form out of broadly similar material and arrive at vastly different orbits later in their evolution.
Results from the Kepler mission indicate that the occurrence rate of small planets ($<3$ $R_oplus$) in the habitable zone of nearby low-mass stars may be as high as 80%. Despite this abundance, probing the conditions and atmospheric properties on any
Transmission spectroscopy to date has detected atomic and molecular absorption in Jupiter-sized exoplanets, but intense efforts to measure molecular absorption in the atmospheres of smaller (Neptune-sized) planets during transits have revealed only f
We present an atmospheric characterization study of two medium sized planets bracketing the radius of Neptune: HD 106315 c (R$_{rm{P}}$=4.98 $pm$ 0.23 R$_{oplus}$) and HD 3167 c (R$_{rm{P}}$=2.740$_{-0.100}^{+0.106}$ R$_{oplus}$). We analyse spatiall
Non-rocky sub-jovian exoplanets in high irradiation environments are rare. LTT 9979b, also known as TESS Object of Interest (TOI) 193.01, is one of the few such planets discovered to date, and the first example of an ultra-hot Neptune. The planets bu
Stellar heating causes atmospheres of close-in exoplanets to expand and escape. These extended atmospheres are difficult to observe because their main spectral signature - neutral hydrogen at ultraviolet wavelengths - is strongly absorbed by interste