ترغب بنشر مسار تعليمي؟ اضغط هنا

Accretion-to-jet energy conversion efficiency in GW170817

42   0   0.0 ( 0 )
 نشر من قبل Om Sharan Salafia
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on previously published multi-wavelength modelling of the GRB 170817A jet afterglow, that includes information from the VLBI centroid motion, we construct the posterior probability density distribution on the total energy in the bipolar jets launched by the GW170817 merger remnant. By applying a new numerical-relativity-informed fitting formula for the accretion disk mass, we construct the posterior probability density distribution of the GW170817 remnant disk mass. By combining the two, we estimate the accretion-to-jet energy conversion efficiency in this system, carefully accounting for uncertainties. The accretion-to-jet energy conversion efficiency in GW170817 is $etasim 10^{-3}$ with an uncertainty of slightly less than two orders of magnitude. This low efficiency is in good agreement with expectations from the $ ubar u$ mechanism, which therefore cannot be excluded by this measurement alone. Such an efficiency also agrees with that anticipated for the Blandford-Znajek mechanism, provided that the magnetic field in the disk right after the merger is predominantly toroidal (which is expected as a result of the merger dynamics).

قيم البحث

اقرأ أيضاً

A new component was reported in the X-ray counterpart to the binary neutron-star merger and gravitational wave event GW170817, exceeding the afterglow emission from an off-axis structured jet. The afterglow emission from the kilonova/macronova ejecta may explain the X-ray excess but exceeds the radio observations if the spectrum is the same. We propose a fallback accretion model that a part of ejecta from the neutron star merger falls back and forms a disk around the central compact object. In the super-Eddington accretion phase, the X-ray luminosity stays near the Eddington limit of a few solar masses and the radio is weak, as observed. This will be followed by a power law decay. The duration of the constant luminosity phase conveys the initial fallback timescale $t_0$ in the past. The current multi-year duration requires $t_0 > 3$--$30$ sec, suggesting that the disk wind rather than the dynamical ejecta falls back after the jet launch. Future observations in the next decades will probe the timescale of $t_0 sim 10$--$10^4$ sec, around the time of extended emission in short gamma-ray bursts. The fallback accretion has not been halted by the $r$-process heating, implying that fission is weak on the year scale. We predict that the X-ray counterpart will disappear in a few decades due to the $r$-process halting or the depletion of fallback matter.
86 - K. P. Mooley 2018
We present new 0.6-10 GHz observations of the binary neutron star merger GW170817 covering the period up to 300 days post-merger, taken with the Karl G. Jansky Very Large Array, the Australia Telescope Compact Array, the Giant Metrewave Radio Telesco pe and the MeerKAT telescope. We use these data to precisely characterize the decay phase of the late-time radio light curve. We find that the temporal decay is consistent with a power-law slope of t^-2.2, and that the transition between the power-law rise and decay is relatively sharp. Such a slope cannot be produced by a quasi-isotropic (cocoon-dominated) outflow, but is instead the classic signature of a relativistic jet. This provides strong observational evidence that GW170817 produced a successful jet, and directly demonstrates the link between binary neutron star mergers and short-hard GRBs. Using simple analytical arguments, we derive constraints on the geometry and the jet opening angle of GW170817. These results are consistent with those from our companion Very Long Baseline Interferometry (VLBI) paper, reporting superluminal motion in GW170817.
The power spectral density (PSD) of the X-ray emission variability from the accretion disc-corona region of black hole X-ray binaries and active galactic nuclei has a broken power law shape with a characteristic break time-scale. If the disc and the jet are connected, the jet variability may also contain a characteristic time-scale related to that of the disc-corona. Recent observations of the blazar Mrk 421 have confirmed the broken power law shape of the PSD of its jet X-ray variability. We model the time variability of a blazar, in which emitting particles are assumed to be accelerated by successive shock waves flowing down the jet with a varying inter-shock time-scale. We investigate the possible relation between the characteristic time-scales in the disc and jet variability based on the above model, along with mathematically and physically simulated disc variability. We find that both the PSD of the jet and disc variability may have a broken power law shape but the break time-scales are not related in general except only in systems with a small range of BH mass. The break in the jet and the disc PSD are connected to the interval between large amplitude outbursts in the jet (inter-shock time-scale) and to the viscous time-scale in the disc, respectively. In frequency bands where multiple emission processes are involved or emission is from lower energy particles, the break in the PSD may not be prominent enough for detection.
The binary neutron star merger GW170817 was accompanied by radiation across the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance of 41+/-3 Mpc. The radio and X-ray afterglows of GW170817 exhibited delayed onset, a gradual r ise in the emission with time as t^0.8, a peak at about 150 days post-merger, followed by a relatively rapid decline. To date, various models have been proposed to explain the afterglow emission, including a choked-jet cocoon and a successful-jet cocoon (a.k.a. structured jet). However, the observational data have remained inconclusive as to whether GW170817 launched a successful relativistic jet. Here we show, through Very Long Baseline Interferometry, that the compact radio source associated with GW170817 exhibits superluminal motion between two epochs at 75 and 230 days post-merger. This measurement breaks the degeneracy between the models and indicates that, while the early-time radio emission was powered by a wider-angle outflow (cocoon), the late-time emission was most likely dominated by an energetic and narrowly-collimated jet, with an opening angle of <5 degrees, and observed from a viewing angle of about 20 degrees. The imaging of a collimated relativistic outflow emerging from GW170817 adds substantial weight to the growing evidence linking binary neutron star mergers and short gamma-ray bursts.
142 - Pei-Xin Shen , Wei-Min Gu 2020
When the matter from a companion star is accreted towards the central compact accretor, i.e. a black hole (BH) or a neutron star (NS), an accretion disc and a jet outflow will form, providing bight X-ray and radio emission, which is known as X-ray bi naries (XRBs). In the low/hard state, there exist disc-jet couplings in XRBs, but it remains uncertain whether the jet power comes from the disc or the central accretor. Moreover, BHXRBs have different properties compared with NSXRBs: quiescent BHXRBs are typically two to three orders of magnitude less luminous than NSXRBs in X-ray, whereas BHXRBs are more radio loud than NSXRBs. In observations, an empirical correlation has been established between radio and X-ray luminosity, $L_{rm R} propto L_{rm X}^b$, where $bsim 0.7$ for BHXRBs and $b sim 1.4$ for non-pulsating NSXRBs. However, there are some outliers of BHXRBs showing unusually steep correlation as NSXRBs at higher luminosities. In this work, under the assumption that the origin of jet power is related to the internal energy of the inner disc, we apply our magnetized, radiatively efficient thin disc model and the well-known radiatively inefficient accretion flow model to NSXRBs and BHXRBs. We find that the observed radio/X-ray correlations in XRBs can be well understood by the disc-jet couplings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا