ﻻ يوجد ملخص باللغة العربية
Feynman integral computations in theoretical high energy particle physics frequently involve square roots in the kinematic variables. Physicists often want to solve Feynman integrals in terms of multiple polylogarithms. One way to obtain a solution in terms of these functions is to rationalize all occurring square roots by a suitable variable change. In this paper, we give a rigorous definition of rationalizability for square roots of ratios of polynomials. We show that the problem of deciding whether a single square root is rationalizable can be reformulated in geometrical terms. Using this approach, we give easy criteria to decide rationalizability in most cases of square roots in one and two variables. We also give partial results and strategies to prove or disprove rationalizability of sets of square roots. We apply the results to many examples from actual computations in high energy particle physics.
In this paper we generalize the definition of rationalizability for square roots of polynomials introduced by M. Besier and the first author to field extensions. We then show that the rationalizability of a set of field extensions is equivalent to th
The computation of Feynman integrals often involves square roots. One way to obtain a solution in terms of multiple polylogarithms is to rationalize these square roots by a suitable variable change. We present a program that can be used to find such
In these notes, we consider the problem of finding the logarithm or the square root of a real matrix. It is known that for every real n x n matrix, A, if no real eigenvalue of A is negative or zero, then A has a real logarithm, that is, there is a re
In the computation of Feynman integrals which evaluate to multiple polylogarithms one encounters quite often square roots. To express the Feynman integral in terms of multiple polylogarithms, one seeks a transformation of variables, which rationalize
In this paper we give a new proof of the ELSV formula. First, we refine an argument of Okounkov and Pandharipande in order to prove (quasi-)polynomiality of Hurwitz numbers without using the ELSV formula (the only way to do that before used the ELSV