ترغب بنشر مسار تعليمي؟ اضغط هنا

QCD2019 Workshop Summary

91   0   0.0 ( 0 )
 نشر من قبل Victor Mokeev
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The topical workshop {it Strong QCD from Hadron Structure Experiments} took place at Jefferson Lab from Nov. 6-9, 2019. Impressive progress in relating hadron structure observables to the strong QCD mechanisms has been achieved from the {it ab initio} QCD description of hadron structure in a diverse array of methods in order to expose emergent phenomena via quasi-particle formation. The wealth of experimental data and the advances in hadron structure theory make it possible to gain insight into strong interaction dynamics in the regime of large quark-gluon coupling (the strong QCD regime), which will address the most challenging problems of the Standard Model on the nature of the dominant part of hadron mass, quark-gluon confinement, and the emergence of the ground and excited state hadrons, as well as atomic nuclei, from QCD. This workshop aimed to develop plans and to facilitate the future synergistic efforts between experimentalists, phenomenologists, and theorists working on studies of hadron spectroscopy and structure with the goal to connect the properties of hadrons and atomic nuclei available from data to the strong QCD dynamics underlying their emergence from QCD. These results pave the way for a future breakthrough extension in the studies of QCD with an Electron-Ion Collider in the U.S.

قيم البحث

اقرأ أيضاً

The workshop on Parton Distributions and Lattice Calculations in the LHC era (PDFLattice2017) was hosted at Balliol College, Oxford (UK), from 22$^{rm nd}$ to 24$^{rm th}$ March 2017. The workshop brought together the lattice-QCD and the global-fit p hysicists who devote their efforts to determine the parton distribution functions (PDFs) of the proton. The goals were to make the two communities more familiar between each other, review developments from both sides, and set precision targets for lattice calculations so that they can contribute, together with the forthcoming experimental input, to the next generation of PDF determinations. This contribution summarises the relevant outcome of the workshop, in anticipation of a thorough white paper.
This document reports the first year of activity of the VBSCan COST Action network, as summarised by the talks and discussions happened during the VBSCan Thessaloniki 2018 workshop. The VBSCan COST action is aiming at a consistent and coordinated stu dy of vector-boson scattering from the phenomenological and experimental point of view, for the best exploitation of the data that will be delivered by existing and future particle colliders.
The NuSTEC workshop held at the University of Pittsburgh in October 2019 brought theorists and experimentalists together to discuss the state of modeling and measurements related to pion production in neutrino-nucleus scattering in the kinematic regi on where pions are produced through both resonant and non-resonant mechanisms. Modeling of this region is of critical importance to the current and future accelerator- and atmospheric-based neutrino oscillation experiments. For the benefit of the community, links to the presentations are accompanied by annotations from the speakers highlighting significant points made during the presentations and resulting discussions.
The NuSTEC workshop (https://indico.cern.ch/event/727283) held at LAquila in October 2018 was devoted to neutrino-nucleus scattering in the kinematic region where hadronic systems with invariant masses above the $Delta(1232)$ resonance are produced: the so-called shallow- and deep-inelastic scattering regime. Not only is the physics in this kinematic region quite intriguing, it is also important for current and future oscillation experiments with accelerator and atmospheric neutrinos. For the benefit of the community, links to the presentations are accompanied by annotations from the speakers.
Recent developments on tau detection technologies and the construction of high intensity neutrino beams open the possibility of a high precision search for non-standard {mu} - {tau} flavour transition with neutrinos at short distances. The MINSIS - M ain Injector Non-Standard Interaction Search- is a proposal under discussion to realize such precision measurement. This document contains the proceedings of the workshop which took place on 10-11 December 2009 in Madrid to discuss both the physics reach as well as the experimental requirements for this proposal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا