ﻻ يوجد ملخص باللغة العربية
In this paper, we study the topological spectrum of weighted Birkhoff averages over aperiodic and irreducible subshifts of finite type. We show that for a uniformly continuous family of potentials, the spectrum is continuous and concave over its domain. In case of typical weights with respect to some ergodic quasi-Bernoulli measure, we determine the spectrum. Moreover, in case of full shift and under the assumption that the potentials depend only on the first coordinate, we show that our result is applicable for regular weights, like Mobius sequence.
Let ${s_n}_{ninmathbb{N}}$ be a decreasing nonsummable sequence of positive reals. In this paper, we investigate the weighted Birkhoff average $frac{1}{S_n}sum_{k=0}^{n-1}s_kphi(T^kx)$ on aperiodic irreducible subshift of finite type $Sigma_{bf A}$ w
This paper is aimed at a detailed study of the multifractal analysis of the so-called divergence points in the system of $beta$-expansions. More precisely, let $([0,1),T_{beta})$ be the $beta$-dynamical system for a general $beta>1$ and $psi:[0,1]map
For a Markov map of an interval or the circle with countably many branches and finitely many neutral periodic points, we establish conditional variational formulas for the mixed multifractal spectra of Birkhoff averages of countably many observables,
This paper is devoted to study multifractal analysis of quotients of Birkhoff averages for countable Markov maps. We prove a variational principle for the Hausdorff dimension of the level sets. Under certain assumptions we are able to show that the s
For piecewise monotone interval maps we look at Birkhoff spectra for regular potential functions. This means considering the Hausdorff dimension of the set of points for which the Birkhoff average of the potential takes a fixed value. In the uniforml