ﻻ يوجد ملخص باللغة العربية
Aberration-corrected electron microscopy can resolve the smallest atomic bond-lengths in nature. However, the high-convergence angles that enable spectacular resolution in 2D have unknown 3D resolution limits for all but the smallest objects ($< sim$8nm). We show aberration-corrected electron tomography offers new limits for 3D imaging by measuring several focal planes at each specimen tilt. We present a theoretical foundation for aberration-corrected electron tomography by establishing analytic descriptions for resolution, sampling, object size, and dose---with direct analogy to the Crowther-Klug criterion. Remarkably, aberration-corrected scanning transmission electron tomography can measure complete 3D specimen structure of unbounded object sizes up to a specified cutoff resolution. This breaks the established Crowther limit when tilt increments are twice the convergence angle or smaller. Unprecedented 3D resolution is achievable across large objects. Atomic 3D imaging (1$unicode{xC5}$) is allowed across extended objects larger than depth-of-focus (e.g. $>$ 20nm) using available microscopes and modest specimen tilting ($<$ 3$^circ$). Furthermore, aberration-corrected tomography follows the rule of dose-fractionation where a specified total dose can be divided among tilts and defoci.
For quantitative electron microscopy high precision position information is necessary so that besides an adequate resolution and sufficiently strong contrast of atoms, small width of peaks which represent atoms in structural images is needed. Size of
In this work, an optic fiber based $textit{in situ}$ illumination system integrated into an aberration-corrected environmental transmission electron microscope (ETEM) is designed, built, characterized and applied. With this illumination system, the d
Incommensurate modulated structure (IMS) in Bi2Sr1.6La0.4CuO6+{delta} (BSLCO) has been studied by aberration corrected transmission electron microscopy in combination with high-dimensional (HD) space description. Two images in the negative Cs imaging
In this theoretical study we analyze contrast transfer of weak-phase objects in a transmission electron microscope, which is equipped with an aberration corrector (Cs-corrector) in the imaging lens system and a physical phase plate in the back focal
Full exploitation of emittance exchange (EEX) requires aberration-free performance of a complex imaging system including active radio-frequency (RF) elements which can add temporal distortions. We investigate the performance of an EEX line where the