ترغب بنشر مسار تعليمي؟ اضغط هنا

Insights from Graph Theory on the Morphologies of Actomyosin Networks with Multilinkers

92   0   0.0 ( 0 )
 نشر من قبل Margaret Cheung
 تاريخ النشر 2020
  مجال البحث فيزياء علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantifying the influence of microscopic details on the dynamics of development of the overall structure of a filamentous network is important in a number of biologically relevant contexts, but it is not obvious what order parameters can be used to adequately describe this complex process. In this paper, we investigated the role of multivalent actin-binding proteins (ABPs) in reorganizing actin filaments into higher-order complex networks via a computer model of semiflexible filaments. We characterize the importance of local connectivity among actin filaments as well as the global features of actomyosin networks. We first map the networks into local graph representations and then, using principles from network-theory order parameters, combine properties from these representations to gain insight on the heterogeneous morphologies of actomyosin networks at a global level. We find that ABPs with a valency greater than two promote filament bundles and large filament clusters to a much greater extent than bivalent multilinkers. We also show that active myosin-like motor proteins promote the formation of dendritic branches from a stalk of actin bundles. Our work motivates future studies to embrace network theory as a tool to characterize complex morphologies of actomyosin detected by experiments, leading to a quantitative understanding of the role of ABPs in manipulating the self-assembly of actin filaments into unique architectures that underlie the structural scaffold of a cell relating to its mobility and shape.



قيم البحث

اقرأ أيضاً

It is well known that stochastically modeled reaction networks that are complex balanced admit a stationary distribution that is a product of Poisson distributions. In this paper, we consider the following related question: supposing that the initial distribution of a stochastically modeled reaction network is a product of Poissons, under what conditions will the distribution remain a product of Poissons for all time? By drawing inspiration from Crispin Gardiners Poisson representation for the solution to the chemical master equation, we provide a necessary and sufficient condition for such a product-form distribution to hold for all time. Interestingly, the condition is a dynamical complex-balancing for only those complexes that have multiplicity greater than or equal to two (i.e. the higher order complexes that yield non-linear terms to the dynamics). We term this new condition the dynamical and restricted complex balance condition (DR for short).
We derive a reduction formula for singularly perturbed ordinary differential equations (in the sense of Tikhonov and Fenichel) with a known parameterization of the critical manifold. No a priori assumptions concerning separation of slow and fast vari ables are made, or necessary.We apply the theoretical results to chemical reaction networks with mass action kinetics admitting slow and fast reactions. For some relevant classes of such systems there exist canonical parameterizations of the variety of stationary points, hence the theory is applicable in a natural manner. In particular we obtain a closed form expression for the reduced system when the fast subsystem admits complex balanced steady states.
We present a novel method for identifying a biochemical reaction network based on multiple sets of estimated reaction rates in the corresponding reaction rate equations arriving from various (possibly different) experiments. The current method, unlik e some of the graphical approaches proposed in the literature, uses the values of the experimental measurements only relative to the geometry of the biochemical reactions under the assumption that the underlying reaction network is the same for all the experiments. The proposed approach utilizes algebraic statistical methods in order to parametrize the set of possible reactions so as to identify the most likely network structure, and is easily scalable to very complicated biochemical systems involving a large number of species and reactions. The method is illustrated with a numerical example of a hypothetical network arising form a mass transfer-type model.
Biological cells are often found to sense their chemical environment near the single-molecule detection limit. Surprisingly, this precision is higher than simple estimates of the fundamental physical limit, hinting towards active sensing strategies. In this work, we analyse the effect of cell memory, e.g. from slow biochemical processes, on the precision of sensing by cell-surface receptors. We derive analytical formulas, which show that memory significantly improves sensing in weakly fluctuating environments. However, surprisingly when memory is adjusted dynamically, the precision is always improved, even in strongly fluctuating environments. In support of this prediction we quantify the directional biases in chemotactic Dictyostelium discoideum cells in a flow chamber with alternating chemical gradients. The strong similarities between cell sensing and control engineering suggest universal problem-solving strategies of living matter.
Switching of the direction of flagella rotations is the key control mechanism governing the chemotactic activity of E. coli and many other bacteria. Power-law distributions of switching times are most peculiar because their emergence cannot be deduce d from simple thermodynamic arguments. Recently it was suggested that by adding finite-time correlations into Gaussian fluctuations regulating the energy height of barrier between the two rotation states, one can generate a power-law switching statistics. By using a simple model of a regulatory pathway, we demonstrate that the required amount of correlated `noise can be produced by finite number fluctuations of reacting protein molecules, a condition common to the intracellular chemistry. The corresponding power-law exponent appears as a tunable characteristic controlled by parameters of the regulatory pathway network such as equilibrium number of molecules, sensitivities, and the characteristic relaxation time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا