ترغب بنشر مسار تعليمي؟ اضغط هنا

The role of quantum coherence in energy fluctuations

314   0   0.0 ( 0 )
 نشر من قبل Mauro Paternostro
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the role of quantum coherence in the energy fluctuations of open quantum systems. To this aim, we introduce an operational protocol, to which we refer to as the end-point-measurement scheme, allowing to define the statistics of energy changes as a function of energy measurements performed only after its evolution. At the price of an additional uncertainty on the value of the initial energies, this approach prevents the loss of initial quantum coherences and enables the estimation of their effects on energy fluctuations. We illustrate our findings using a three-level quantum system in interaction with thermal reservoirs.



قيم البحث

اقرأ أيضاً

We discuss the role of quantum coherence in the energy fluctuations of open quantum systems. To this aim, we introduce a protocol, to which we refer to as the end-point-measurement scheme, allowing to define the statistics of energy changes as a func tion of energy measurements performed only after the evolution of the initial state. At the price of an additional uncertainty on the initial energies, this approach prevents the loss of initial quantum coherences and enables the estimation of their effects on energy fluctuations. We demonstrate our findings by running an experiment on the IBM Quantum Experience superconducting qubit platform.
The role of quantum coherence and the environment in the dynamics of excitation energy transfer is not fully understood. In this work, we introduce the concept of dynamical contributions of various physical processes to the energy transfer efficiency . We develop two complementary approaches, based on a Greens function method and energy transfer susceptibilities, and quantify the importance of the Hamiltonian evolution, phonon-induced decoherence, and spatial relaxation pathways. We investigate the Fenna-Matthews-Olson protein complex, where we find a contribution of coherent dynamics of about 10% and of relaxation of 80%.
We introduce and study the task of assisted coherence distillation. This task arises naturally in bipartite systems where both parties work together to generate the maximal possible coherence on one of the subsystems. Only incoherent operations are a llowed on the target system while general local quantum operations are permitted on the other, an operational paradigm that we call local quantum-incoherent operations and classical communication (LQICC). We show that the asymptotic rate of assisted coherence distillation for pure states is equal to the coherence of assistance, an analog of the entanglement of assistance, whose properties we characterize. Our findings imply a novel interpretation of the von Neumann entropy: it quantifies the maximum amount of extra quantum coherence a system can gain when receiving assistance from a collaborative party. Our results are generalized to coherence localization in a multipartite setting and possible applications are discussed.
We explore the consequences of periodically modulating a quantum two-level system (TLS) with an asymmetric pulse when the system is in contact with thermal baths. By adopting the Floquet-Lindblad formalism for our analysis, we find that the unequal u p and down time duration of the pulse has two main ramifications. First, the energy gap of the multiple sidebands or photon sectors created as a result of the periodic modulation are renormalized by a term which is dependent on both the modulation strength as well as the fraction of up (or down) time duration. Second, the weights of the different sidebands are no longer symmetrically distributed about the central band or zero photon sector. We illustrate the advantages of these findings in the context of applications in quantum thermal machines and thermometry. For a thermal machine constructed by coupling the TLS to two thermal baths, we demonstrate that the asymmetric pulse provides an extra degree of control over the mode of operation of the thermal machine. Further, by appropriately tuning the weight of the subbands, we also show that an asymmetric pulse may provide superior optimality in a recently proposed protocol for quantum thermometry, where dynamical control has been shown to enhance the precision of measurement.
In Newtonian mechanics, any closed-system dynamics of a composite system in a microstate will leave all its individual subsystems in distinct microstates, however this fails dramatically in quantum mechanics due to the existence of quantum entangleme nt. Here we introduce the notion of a `coherent work process, and show that it is the direct extension of a work process in classical mechanics into quantum theory. This leads to the notion of `decomposable and `non-decomposable quantum coherence and gives a new perspective on recent results in the theory of asymmetry as well as early analysis in the theory of classical random variables. Within the context of recent fluctuation relations, originally framed in terms of quantum channels, we show that coherent work processes play the same role as their classical counterparts, and so provide a simple physical primitive for quantum coherence in such systems. We also introduce a pure state effective potential as a tool with which to analyze the coherent component of these fluctuation relations, and which leads to a notion of temperature-dependent mean coherence, provides connections with multi-partite entanglement, and gives a hierarchy of quantum corrections to the classical Crooks relation in powers of inverse temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا