ترغب بنشر مسار تعليمي؟ اضغط هنا

A note on the Turan number of disjoint union of wheels

121   0   0.0 ( 0 )
 نشر من قبل Chuanqi Xiao
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Turan number of a graph $H$, $text{ex}(n,H)$, is the maximum number of edges in a graph on $n$ vertices which does not have $H$ as a subgraph. A wheel $W_n$ is an $n$-vertex graph formed by connecting a single vertex to all vertices of a cycle $C_{n-1}$. Let $mW_{2k+1}$ denote the $m$ vertex-disjoint copies of $W_{2k+1}$. For sufficiently large $n$, we determine the Turan number and all extremal graphs for $mW_{2k+1}$. We also provide the Turan number and all extremal graphs for $W^{h}:=bigcuplimits^m_{i=1}W_{k_i}$ when $n$ is sufficiently large, where the number of even wheels is $h$ and $h>0$.

قيم البحث

اقرأ أيضاً

A Gallai coloring of a complete graph is an edge-coloring such that no triangle has all its edges colored differently. A Gallai $k$-coloring is a Gallai coloring that uses $k$ colors. Given a graph $H$ and an integer $kgeq 1$, the Gallai-Ramsey numbe r $GR_k(H)$ of $H$ is the least positive integer $N$ such that every Gallai $k$-coloring of the complete graph $K_N$ contains a monochromatic copy of $H$. Let $W_{2n} $ denote an even wheel on $2n+1ge5$ vertices. In this note, we study Gallai-Ramsey number of $W_{2n}$ and completely determine the exact value of $GR_k(W_4)$ for all $kge2$.
Let $F$ be a fixed graph. The rainbow Turan number of $F$ is defined as the maximum number of edges in a graph on $n$ vertices that has a proper edge-coloring with no rainbow copy of $F$ (where a rainbow copy of $F$ means a copy of $F$ all of whose e dges have different colours). The systematic study of such problems was initiated by Keevash, Mubayi, Sudakov and Verstraete. In this paper, we show that the rainbow Turan number of a path with $k+1$ edges is less than $left(frac{9k}{7}+2right) n$, improving an earlier estimate of Johnston, Palmer and Sarkar.
We show that the Union-Closed Conjecture holds for the union-closed family generated by the cyclic translates of any fixed set.
The Turan number of a graph $H$, denoted by $ex(n,H)$, is the maximum number of edges in any graph on $n$ vertices which does not contain $H$ as a subgraph. Let $P_{k}$ denote the path on $k$ vertices and let $mP_{k}$ denote $m$ disjoint copies of $P _{k}$. Bushaw and Kettle [Tur{a}n numbers of multiple paths and equibipartite forests, Combin. Probab. Comput. 20(2011) 837--853] determined the exact value of $ex(n,kP_ell)$ for large values of $n$. Yuan and Zhang [The Tur{a}n number of disjoint copies of paths, Discrete Math. 340(2)(2017) 132--139] completely determined the value of $ex(n,kP_3)$ for all $n$, and also determined $ex(n,F_m)$, where $F_m$ is the disjoint union of $m$ paths containing at most one odd path. They also determined the exact value of $ex(n,P_3cup P_{2ell+1})$ for $ngeq 2ell+4$. Recently, Bielak and Kieliszek [The Tur{a}n number of the graph $2P_5$, Discuss. Math. Graph Theory 36(2016) 683--694], Yuan and Zhang [Tur{a}n numbers for disjoint paths, arXiv: 1611.00981v1] independently determined the exact value of $ex(n,2P_5)$. In this paper, we show that $ex(n,2P_{7})=max{[n,14,7],5n-14}$ for all $n ge 14$, where $[n,14,7]=(5n+91+r(r-6))/2$, $n-13equiv r,(text{mod }6)$ and $0leq r< 6$.
The Turan number of a graph H, ex(n,H), is the maximum number of edges in a graph on n vertices which does not have H as a subgraph. Let P_k be the path with k vertices, the square P^2_k of P_k is obtained by joining the pairs of vertices with distan ce one or two in P_k. The powerful theorem of ErdH{o}s, Stone and Simonovits determines the asymptotic behavior of ex(n,P^2_k). In the present paper, we determine the exact value of ex(n,P^2_5) and ex(n,P^2_6) and pose a conjecture for the exact value of ex(n,P^2_k).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا