ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical masses of brightest cluster galaxies I: stellar velocity anisotropy and mass-to-light ratios

130   0   0.0 ( 0 )
 نشر من قبل Susan Ilani Loubser
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the stellar and dynamical mass profiles in the centres of 25 brightest cluster galaxies (BCGs) at redshifts of 0.05 $leq z leq$ 0.30. Our spectroscopy enables us to robustly measure the Gauss-Hermite higher order velocity moments $h_{3}$ and $h_{4}$, which we compare to measurements for massive early-type galaxies, and central group galaxies. We measure positive central values for $h_{4}$ for all the BCGs. We derive the stellar mass-to-light ratio ($Upsilon_{star rm DYN}$), and velocity anisotropy ($beta$) based on a Multi-Gaussian Expansion (MGE) and axisymmetric Jeans Anisotropic Methods (JAM, cylindrically- and spherically-aligned). We explicitly include a dark matter halo mass component, which is constrained by weak gravitational lensing measurements for these clusters. We find a strong correlation between anisotropy and velocity dispersion profile slope, with rising velocity dispersion profiles corresponding to tangential anisotropy and decreasing velocity dispersion profiles corresponding to radial anisotropy. The rising velocity dispersion profiles can also indicate a significant contribution from the intracluster light (ICL) to the total light (in projection) in the centre of the galaxy. For a small number of BCGs with rising velocity dispersion profiles, a variable stellar mass-to-light ratio can also account for the profile shape, instead of tangential anisotropy or a significant ICL contribution. We note that, for some BCGs, a variable $beta_{z}(r)$ (from radial to tangential anisotropy) can improve the model fit to the observed kinematic profiles. The observed diversity in these properties illustrates that BCGs are not the homogeneous class of objects they are often assumed to be.



قيم البحث

اقرأ أيضاً

We use stellar and dynamical mass profiles, combined with a stellar population analysis, of 32 brightest cluster galaxies (BCGs) at redshifts of 0.05 $leq z leq$ 0.30, to place constraints on their stellar Initial Mass Function (IMF). We measure the spatially-resolved stellar population properties of the BCGs, and use it to derive their stellar mass-to-light ratios ($Upsilon_{star rm POP}$). We find young stellar populations ($<$200 Myr) in the centres of 22 per cent of the sample, and constant $Upsilon_{star rm POP}$ within 15 kpc for 60 per cent of the sample. We further use the stellar mass-to-light ratio from the dynamical mass profiles of the BCGs ($Upsilon_{star rm DYN}$), modelled using a Multi-Gaussian Expansion (MGE) and Jeans Anisotropic Method (JAM), with the dark matter contribution explicitly constrained from weak gravitational lensing measurements. We directly compare the stellar mass-to-light ratios derived from the two independent methods, $Upsilon_{star rm POP}$ (assuming some IMF) to $Upsilon_{star rm DYN}$ for the subsample of BCGs with no young stellar populations and constant $Upsilon_{star rm POP}$. We find that for the majority of these BCGs, a Salpeter (or even more bottom-heavy) IMF is needed to reconcile the stellar population and dynamical modelling results although for a small number of BCGs, a Kroupa (or even lighter) IMF is preferred. For those BCGs better fit with a Salpeter IMF, we find that the mass-excess factor against velocity dispersion falls on an extrapolation (towards higher masses) of known literature correlations. We conclude that there is substantial scatter in the IMF amongst the highest-mass galaxies.
As an introduction of a kinematic survey of Magellanic Cloud (MC) star clusters, we report on the dynamical masses and mass-to-light ($M/L$) ratios of NGC 419 (SMC) and NGC 1846 (LMC). We have obtained more than one hundred high-resolution stellar sp ectra in and around each cluster using the multi-object spectrograph M2FS on the $Magellan$/Clay Telescope. Line-of-sight velocities and positions of the stars observed in each cluster were used as input to an expectation-maximization algorithm used to estimate cluster membership probabilities, resulting in samples of 46 and 52 likely members ($P_{M}geq 50$%) in NGC 419 and NGC 1846, respectively. This process employed single-mass King models constrained by the structural parameters of the clusters and provided self-consistent dynamical mass estimates for both clusters. Our best-fit results show that NGC 419 has a projected central velocity dispersion of $2.44^{+0.37}_{-0.21} {rm km,s^{-1}}$, corresponding to a total mass of $7.6^{+2.5}_{-1.3}times10^4 {rm M}_{odot}$ and $V$-band $M/L$ ratio of $0.22^{+0.08}_{-0.05}$ in solar units. For NGC 1846, the corresponding results are $2.04^{+0.28}_{-0.24} {rm km,s^{-1}}$, $5.4^{+1.5}_{-1.4}times10^4 {rm M}_{odot}$ and $0.32^{+0.11}_{-0.11}$. The mean metallicities of NGC 419 and NGC 1846 are found to be $rm [Fe/H]=-0.84pm0.19$ and $-0.70pm0.08$, respectively, based on the spectra of likely cluster members. We find marginal statistical evidence of rotation in both clusters, though in neither cluster does rotation alter our mass estimates significantly. We critically compare our findings with those of previous kinematic studies of these two clusters in order to evaluate the consistency of our observational results and analytic tools.
232 - Takahiro Inagaki 2014
Understanding the formation history of brightest cluster galaxies is an important topic in galaxy formation. Utilizing the Planck Sunyaev-Zeldovich cluster catalog, and applying the Ansatz that the most massive halos at one redshift remain among the most massive ones at a slightly later cosmic epoch, we have constructed cluster samples at redshift z~0.4 and z~0.2 that can be statistically regarded as progenitor-descendant pairs. This allows us to study the stellar mass assembly history of BCGs in these massive clusters at late times, finding the degree of growth between the two epochs is likely at only few percent level, which is far lower compared to the prediction from a state-of-the-art semi-analytic galaxy formation model.
Observations of 170 local ($zlesssim0.08$) galaxy clusters in the northern hemisphere have been obtained with the Wendelstein Telescope Wide Field Imager (WWFI). We correct for systematic effects such as point-spread function broadening, foreground s tar contamination, relative bias offsets, and charge persistence. Background inhomogeneities induced by scattered light are reduced down to $Delta {rm SB} > 31~g$ mag arcsec$^{-2}$ by large dithering and subtraction of night-sky flats. Residual background inhomogeneities brighter than ${rm SB}_{sigma}< 27.6~g$ mag arcsec$^{-2}$ caused by galactic cirrus are detected in front of 23% of the clusters. However, the large field of view allows discrimination between accretion signatures and galactic cirrus. We detect accretion signatures in the form of tidal streams in 22%, shells in 9.4%, and multiple nuclei in 47% of the Brightest Cluster Galaxies (BCGs) and find two BCGs in 7% of the clusters. We measure semimajor-axis surface brightness profiles of the BCGs and their surrounding Intracluster Light (ICL) down to a limiting surface brightness of ${rm SB} = 30~g$ mag arcsec$^{-2}$. The spatial resolution in the inner regions is increased by combining the WWFI light profiles with those that we measured from archival textit{Hubble Space Telescope} images or deconvolved WWFI images. We find that 71% of the BCG+ICL systems have surface brightness (SB) profiles that are well described by a single Sersic (SS) function, whereas 29% require a double Sersic (DS) function to obtain a good fit. We find that BCGs have scaling relations that differ markedly from those of normal ellipticals, likely due to their indistinguishable embedding in the ICL.
The previously clear division between small galaxies and massive star clusters is now occupied by objects called ultra compact dwarfs (UCDs) and compact ellipticals (cEs). Here we combine a sample of UCDs and cEs with velocity dispersions from the AI MSS project with literature data to explore their dynamical-to-stellar mass ratios. We confirm that the mass ratios of many UCDs in the stellar mass range 10$^6$ -- 10$^9$ M$_{odot}$ are systematically higher than those for globular clusters which have mass ratios near unity. However, at the very highest masses in our sample, i.e. 10$^9$ -- 10$^{10}$ M$_{odot}$, we find that cE galaxies also have mass ratios of close to unity, indicating their central regions are mostly composed of stars. Suggested explanations for the elevated mass ratios of UCDs have included a variable IMF, a central black hole, and the presence of dark matter. Here we present another possible explanation, i.e. tidal stripping. Under various assumptions, we find that the apparent variation in the mass ratio with stellar mass and stellar density can be qualitatively reproduced by published tidal stripping simulations of a dwarf elliptical galaxy. In the early stages of the stripping process the galaxy is unlikely to be in virial equilibrium. At late stages, the final remnant resembles the properties of $sim$10$^7$ M$_{odot}$ UCDs. Finally, we discuss the need for more detailed realistic modelling of tidal stripping over a wider range of parameter space, and observations to further test the stripping hypothesis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا