ترغب بنشر مسار تعليمي؟ اضغط هنا

Morphology and surface photometry of a sample of isolated early-type galaxies from deep imaging

386   0   0.0 ( 0 )
 نشر من قبل Roberto Rampazzo Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Isolated early-type galaxies (iETGs) are evolving in unusually poor environments for this morphological family, which is typical of cluster inhabitants. We investigate the mechanisms driving the evolution of these galaxies. Several studies indicate that interactions, accretions, and merging episodes leave their signature on the galaxy structure, from the nucleus down to the faint outskirts. We focus on revealing such signatures, if any, in a sample of iETGs, and we quantitatively revise their galaxy classification. We observed 20 (out of 104) iETGs, selected from the AMIGA catalog, with the 4KCCD camera at the VATT in the SDSS g and r bands. These are the deepest observations of a sample of iETGs so far. The analysis was performed using the AIDA package, providing PSF-corrected 2D surface photometry up to the galaxy outskirts. The package provides a model of the 2D galaxy light distribution, which after model subtraction enhances the fine and peculiar structures in the residual image of the galaxies. Our re-classification suggests that the sample is composed of bona fide ETGs spanning from ellipticals to late-S0s galaxies. Most of the surface brightness profiles are best fitted with a bulge plus disc model, suggesting the presence of an underlying disc structure. The residuals obtained after the model subtraction show the nearly ubiquitous presence of fine structures, such as shells, stellar fans, rings, and tails. Shell systems are revealed in about 60% of these galaxies. Because interaction, accretion, and merging events are widely interpreted as the origin of the fans, ripples, shells and tails in galaxies, we suggest that most of these iETGs have experienced such events. Because they are isolated (after 2-3 Gyr), these galaxies are the cleanest environment in which to study phenomena connected with events like these.



قيم البحث

اقرأ أيضاً

We explore the application of Bayesian image analysis to infer the properties of an SDSS early-type galaxy sample including AGN. We use GALPHAT (Yoon et al. 2010) with a Bayes-factor model comparison to photometrically infer an AGN population and ver ify this using spectroscopic signatures. Our combined posterior sample for the SDSS sample reveals distinct low and high concentration modes after the point-source flux is modeled. This suggests that ETG parameters are intrinsically bimodal. The bimodal signature was weak when analyzed by GALFIT (Peng et al. 2002, 2010). This led us to create several ensembles of synthetic images to investigate the bias of inferred structural parameters and compare with GALFIT. GALPHAT inferences are less biased, especially for high-concentration profiles: GALPHAT Sersic index $n$, $r_{e}$ and MAG deviate from the true values by $6%$, $7.6%$ and $-0.03 ,mathrm{mag}$, respectively, while GALFIT deviates by $15%$, $22%$ and $-0.09$, mag, respectively. In addition, we explore the reliability for the photometric detection of AGN using Bayes factors. For our SDSS sample with $r_{e}ge 7.92,$arcsec, we correctly identify central point sources with $mathrm{Mag_{PS}}-mathrm{Mag_{Sersic}}le 5$ for $nle6$ and $mathrm{Mag_{PS}}-mathrm{Mag_{Sersic}}le 3$ for $n>6$. The magnitude range increases and classification error decreases with increasing resolution, suggesting that this approach will excel for upcoming high-resolution surveys. Future work will extend this to models that test hypotheses of galaxy evolution through the cosmic time.
The Lyman Alpha Reference Sample (LARS) of 14 star-forming galaxies offers a wealth of insight into the workings of these local analogs to high-redshift star-forming galaxies. The sample has been well-studied in terms of LyA and other emission line p roperties, such as HI mass, gas kinematics, and morphology. We analyze deep surface photometry of the LARS sample in UBIK broadband imaging obtained at the Nordic Optical Telescope and the Canada-France-Hawaii Telescope, and juxtaposition their derived properties with a sample of local high-redshift galaxy analogs, namely, with blue compact galaxies (BCGs). We construct radial surface brightness and color profiles with both elliptical and isophotal integration, as well as RGB images, deep contours, color maps, a burst fraction estimate, and a radial mass-to-light ratio profile for each LARS galaxy. Standard morphological parameters like asymmetry, clumpiness, the Gini and M20 coefficients are [...] analyzed, as well as isophotal asymmetry profiles for each galaxy. [...] We compare the LARS to the properties of the BCG sample and highlight the differences. Several diagnostics indicate that the LARS galaxies have highly disturbed morphologies even at the level of the faintest isophotes [...]. The ground-based photometry [...] reveals previously unexplored isophotes [...]. The burst fraction estimate suggests a spatially more extended burst region in LARS than in the BCGs. [...] The galaxies in the LARS sample appear to be in earlier stages of a merger event compared to the BCGs. Standard morphological diagnostics like asymmetry, clumpiness, Gini and M20 coefficients cannot separate the two samples, although an isophotal asymmetry profile successfully captures the average difference in morphology. These morphological diagnostics do not show any correlation with the equivalent width or the escape fraction of Lyman Alpha. [abridged]
The traditional knowledge of the mechanisms that caused the formation and evolution of early-type galaxies (ETG) in a hierarchical universe was challenged by the unexpected finding by ATLAS3D that 86% of the ETGs show signs of a fast-rotating disk. T his implies a common origin of most spiral galaxies, followed by a quenching phase, while only a minority of the most massive systems are slow rotators and were likely to be the products of merger events. Our aim is to improve our knowledge on the content and distribution of ionized hydrogen and their usage to form stars in a representative sample of ETGs for which the kinematics and detailed morphological classification were known from ATLAS3D. Using narrow-band filters centered on the redshifted Halpha line along with a broad-band (r-Gunn) filter to recover the stellar continuum, we observed or collected existing imaging observations for 147 ETGs (including members of the Virgo cluster) that are representative of the whole ATLAS3D survey. Fifty-five ETGs (37%) were detected in the Halpha line above our detection threshold, (Halpha E.W. <= -1 AA), and 21 harbor a strong source (Halpha E.W. <=-5 AA). The strong Halpha emitters appear associated with low-mass (M 10^10 M_odot) S0 galaxies that contain conspicuous stellar and gaseous discs. These harbor significant star formation at their interior, including their nuclei. The weak Halpha emitters are almost one order of magnitude more massive, contain gas-poor discs and harbor an AGN at their centers. Their emissivity is dominated by [NII] and does not imply star formation. The 92 undetected ETGs are gas-free systems that lack a disc and exhibit passive spectra even in their nuclei. These pieces of evidence reinforce the conclusion that the evolution of ETGs followed the secular channel for the less massive systems and the dry merging channel for the most massive galaxies.
We present the discovery of rotation in quenched, low-mass early-type galaxies that are isolated. This finding challenges the claim that (all) rotating dwarf early-type galaxies in clusters were once spiral galaxies that have since been harassed and transformed into early-type galaxies. Our search of the Sloan Digital Sky Survey data within the Local volume ($z<0.02$) has yielded a sample of 46 galaxies with a stellar mass $M_star lesssim 5times10^9$ M$_odot$ (median $M_star sim 9.29 times 10^8$ M$_odot$), a low H$alpha$ equivalent width EW$_{{rm H}alpha}< 2$ AA, and no massive neighbour ($M_{star}gtrsim3 times 10^{10}$ M$_{odot}$) within a velocity interval of $Delta V = 500$ km s$^{-1}$ and a projected distance of $sim$1 Mpc. Nine of these galaxies were subsequently observed with Keck ESI and their radial kinematics are presented here. These extend out to the half-light radius $R_e$ in the best cases, and beyond $R_e/2$ for all. They reveal a variety of behaviours similar to those of a comparison sample of early-type dwarf galaxies in the Virgo cluster observed by Toloba et al. Both samples have similar frequencies of slow and fast rotators, as well as kinematically decoupled cores. This, and especially the finding of rotating quenched low-mass galaxies in isolation, reveals that the early-type dwarfs in galaxy clusters need not be harassed or tidally stirred spiral galaxies.
We present IRAM 30m and APEX telescope observations of CO(1-0) and CO(2-1) lines in 36 group-dominant early-type galaxies, completing our molecular gas survey of dominant galaxies in the Complete Local-volume Groups Sample. We detect CO emission in 1 2 of the galaxies at >4sigma significance, with molecular gas masses in the range 0.01-6x10^8 Msol, as well as CO in absorption in the non-dominant group member galaxy NGC 5354. In total 21 of the 53 CLoGS dominant galaxies are detected in CO and we confirm our previous findings that they have low star formation rates (0.01-1 Msol/yr) but short depletion times (<1Gyr) implying rapid replenishment of their gas reservoirs. Comparing molecular gas mass with radio luminosity, we find that a much higher fraction of our group-dominant galaxies (60+-16%) are AGN-dominated than is the case for the general population of ellipticals, but that there is no clear connection between radio luminosity and the molecular gas mass. Using data from the literature, we find that at least 27 of the 53 CLoGS dominant galaxies contain HI, comparable to the fraction of nearby non-cluster early type galaxies detected in HI and significantly higher that the fraction in the Virgo cluster. We see no correlation between the presence of an X-ray detected intra-group medium and molecular gas in the dominant galaxy, but find that the HI-richest galaxies are located in X-ray faint groups. Morphological data from the literature suggests the cold gas component most commonly takes the form of a disk, but many systems show evidence of galaxy-galaxy interactions, indicating that they may have acquired their gas through stripping or mergers. We provide improved molecular gas mass estimates for two galaxies previously identified as being in the centres of cooling flows, NGC 4636 and NGC 5846, and find that they are relatively molecular gas poor compared to our other detected systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا