ﻻ يوجد ملخص باللغة العربية
Models beyond the Standard Model have been proposed to simultaneously solve the problems of naturalness and neutrino mass, in which heavy Majorana neutrinos and vector-like top partners are usually predicted. A new decay channel of the top partner mediated by the heavy Majorana neutrino can thus appear: $Tto b,W^{+}to b,ell^{+}ell^{+}qbar{q}$. We study in this paper the observability of this decay process through single production of the top partner at the 14 TeV LHC: $ppto T/bar{T}$+jets$to b/bar{b}+mu^{pm}mu^{pm}$+jets. $2sigma$ exclusion bounds on the top partner mass and mixing parameters are given by Monte-Carlo simulation, which surpass those from the search through VLT pair production in the mass range of $m_{T}>1.3$ TeV.
We first build a minimal model of vector-like quarks where the dominant Higgs boson production process at LHC -- the gluon fusion -- can be significantly suppressed, being motivated by the recent stringent constraints from the search for direct Higgs
We explore constraints on various new physics resonances from four top-quark production based on current experimental data. Both light and heavy resonances are studied in the work. A comparison of full width effect and narrow width approximation is also made.
In this work we reappraise the collider constraints from leptonic final states on the vectorlike colored top partners taking into account the impact of exotic colored vector resonances. These colored states are intrinsic to a broad class of models th
The ATLAS and CMS collaborations at the LHC have performed analyses on the existing data sets, studying the case of one vector-like fermion or multiplet coupling to the standard model Yukawa sector. In the near future, with more data available, these
The single top quark final state provides sensitivity to new heavy resonances produced in proton-proton collisions at the Large Hadron Collider. Particularly, the single top plus quark final state appears in models with heavy charged bosons or scalar