ترغب بنشر مسار تعليمي؟ اضغط هنا

Design and implementation of the new scintillation light detection system of ICARUS T600

194   0   0.0 ( 0 )
 نشر من قبل Gian Luca Raselli
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

ICARUS T600 is the far detector of the Short Baseline Neutrino program at Fermilab(USA), which foresees three Liquid Argon Time Projection Chambers along the Booster Neutrino Beam line to search for LSND-like sterile neutrino signal. The T600 detector underwent a significant overhauling process at CERN, introducing new technological developments while maintaining the already achieved performances. The realization of a new liquid argon scintillation light detection system is a primary task of the detector overhaul. As the detector will be subject to a huge flux of cosmic rays, the light detection system should allow the 3D reconstruction of events contributing to the identification of neutrino interactions in the beam spill gate. The design and implementationof the new scintillation light detection system of ICARUS T600 is described.

قيم البحث

اقرأ أيضاً

111 - M.Bonesini , R.Benocci , R.Bertoni 2020
The ICARUS T600 LAr TPC is the far detector of the Short Baseline Program at FNAL. As it will have to work at shallow depth in the Booster Neutrino Beam, a large cosmic rays background ($sim 11$ kHz) will be present. To reduce it, precise timing info rmation is needed from the new light detection system, based on 360 large area photomultipliers. For precise time measurements a calibration system based on a fast laser diode and a system based on one optical switch, several $1 times 10$ fused fiber splitters, ultra-high vacuum optical feedthroughs and multimode optical patchcords up to 20 m long, to distribute the laser pulses to each single PMT, was designed. The time evolution of the PMTs gain/timing and possibly their initial calibrations at a time $t_0$ will be done by using this system. The expected time resolution of this calibration system will be around 100 ps. The laboratory tests needed to set up the system are reported.
The ICARUS T600, a liquid argon time projection chamber (LAr-TPC) detector mainly devoted to neutrino physics, underwent a major overhauling at CERN in 2016-2017, which included also a new design of the read-out electronics, in view of its operation in Fermilab on the Short Baseline Neutrino (SBN) beam from 2019. The new more compact electronics showed capability of handling more efficiently the signals also in the intermediate Induction 2 wire plane with a significant increase of signal to noise (S/N), allowing for charge measurement also in this view. The new front-end and the analog to digital conversion (ADC) system are presented together with the results of the tests on 50 liters liquid argon TPC performed at CERN with cosmic rays.
The accumulation of positive ions, produced by ionizing particles crossing Liquid Argon Time Projection Chambers (LAr-TPCs), may generate distortions of the electric drift field affecting the track reconstruction of the ionizing events. These effects could become relevant for large LAr-TPCs operating at surface or at shallow depth, where the detectors are exposed to a copious flux of cosmic rays. A detailed study of such possible field distortions in the ICARUS T600 LAr-TPC has been performed analyzing a sample of cosmic muon tracks recorded with one T600 module operated at surface in 2001. The maximum track distortion turns out to be of few mm in good agreement with the prediction by a numerical calculation. As a cross-check, the same analysis has been performed on a cosmic muon sample recorded during the ICARUS T600 run at the LNGS underground laboratory, where the cosmic ray flux was suppressed by a factor $sim 10^6$ by 3400 m water equivalent shielding. No appreciable distortion has been observed, confirming that the effects measured on surface are actually due to ion space charge.
ICARUS T600 liquid argon time projection chamber is the first large mass electronic detector of a new generation able to combine the imaging capabilities of the old bubble chambers with the excellent calorimetric energy measurement. After the three m onths demonstration run on surface in Pavia during 2001, the T600 cryogenic plant was significantly revised, in terms of reliability and safety, in view of its long-term operation in an underground environment. The T600 detector was activated in Hall B of the INFN Gran Sasso Laboratory during Spring 2010, where it was operated without interruption for about three years, taking data exposed to the CERN to Gran Sasso long baseline neutrino beam and cosmic rays. In this paper the T600 cryogenic plant is described in detail together with the commissioning procedures that lead to the successful operation of the detector shortly after the end of the filling with liquid Argon. Overall plant performance and stability during the long-term underground operation are discussed. Finally, the decommissioning procedures, carried out about six months after the end of the CNGS neutrino beam operation, are reported.
ICARUS T600 will be operated as far detector of the Short Baseline Neutrino program at Fermilab (USA), which foresees three liquid argon time projection chambers along the Booster Neutrino Beam line to search for a LSND-like sterile neutrino signal. The detector employs 360 photomultiplier tubes, Hamamatsu model R5912-MOD, suitable for cryogenic applications. A total of 400 PMTs were procured from Hamamatsu and tested at room temperature to evaluate the performance of the devices and their compliance to detect the liquid argon scintillation light in the T600 detector. Furthermore 60 units were also characterized at cryogenic temperature, in liquid argon bath, to evaluate any parameter variation which could affect the scintillation light detection. All the tested PMTs were found to comply with the requirements of ICARUS T600 and a subset of 360 specimens was selected for the final installation in the detector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا