ترغب بنشر مسار تعليمي؟ اضغط هنا

Ferromagnetism out of charge fluctuation of strongly correlated electrons in $kappa$-(BEDT-TTF)$_2$Hg(SCN)$_2$Br

100   0   0.0 ( 0 )
 نشر من قبل Minoru Yamashita Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform magnetic susceptibility and magnetic torque measurements on the organic $kappa$-(BEDT-TTF)$_2$Hg(SCN)$_2$Br, which is recently suggested to host an exotic quantum dipole-liquid in its low-temperature insulating phase. Below the metal-insulator transition temperature, the magnetic susceptibility follows a Curie-Weiss law with a positive Curie-Weiss temperature, and a particular $Mpropto sqrt{H}$ curve is observed. The emergent ferromagnetically interacting spins amount to about 1/6 of the full spin moment of localized charges. Taking account of the possible inhomogeneous quasi-charge-order that forms a dipole-liquid, we construct a model of antiferromagnetically interacting spin chains in two adjacent charge-ordered domains, which are coupled via fluctuating charges on a Mott-dimer at the boundary. We find that the charge fluctuations can draw a weak ferromagnetic moment out of the spin singlet domains.

قيم البحث

اقرأ أيضاً

The organic charge-transfer salt $kappa$-(BEDT-TTF)$_{2}$Hg(SCN)$_{2}$Br is a quasi two-dimensional metal with a half-filled conduction band at ambient conditions. When cooled below $T=80$ K it undergoes a pronounced transition to an insulating phase where the resistivity increases many orders of magnitude. In order to elucidate the nature of this metal-insulator transition we have performed comprehensive transport, dielectric and optical investigations. The findings are compared with other dimerized $kappa$-(BEDT-TTF) salts, in particular the Cl-analogue, where a charge-order transition takes place at $T_{rm CO}=30$ K.
Low temperature scanning tunneling spectroscopy reveals the local density of states of the organic superconductor $kappa$-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br, that was cut in-situ in ultra-high vacuum perpendicular to the superconducting BEDT-TTF layers. T he spectra confirm that superconductivity is confined to the conducting BEDT-TTF layers, while the Cu[N(CN)$_2$]Br anion layers are insulating. The density of states comprises a twofold superconducting gap, which is attributed to the two separated bands crossing the Fermi surface.
Since the first observation of weak ferromagnetism in the charge-transfer salt kappa-(BEDT-TTF)2-Cu[N(CN)2]Cl [U. Welp et al., Phys. Rev. Lett. 69, 840 (1992)], no further evidence of ferromagnetism in this class of organic materials has been reporte d. Here we present static and dynamic spin susceptibility measurements on kappa-(BEDT-TTF)2Hg(SCN)2Br revealing weak ferromagnetism below about TWF = 20 K. We suggest that frustrated spins in the molecular dimers suppress long-range order, forming a spin-glass ground state in the insulating phase.
We present high-resolution measurements of the relative length change as a function of temperature of the organic charge-transfer salt $kappa$-(BEDT-TTF)$_2$Hg(SCN)$_2$Cl. We identify anomalous features at $T_g approx,63$ K which can be assigned to a kinetic glass-like ordering transition. By determining the activation energy $E_A$, this glass-like transition can be related to conformational degrees of freedom of the ethylene endgroups of the organic building block BEDT-TTF. As opposed to other $kappa$-(BEDT-TTF)$_2X$ salts, we identify a peculiar ethylene endgroup ordering in the present material in which only one of the two crystallographically inequivalent ethylene endgroups is subject to glass-like ordering. This experimental finding is fully consistent with our predictions from $ab,initio$ calculations from which we estimate the energy differences $Delta E$ and the activation energies $E_A$ between different conformations. The present results indicate that the specific interaction between the ethylene endgroups and the nearby anion layers leads to different energetics of the inequivalent ethylene endgroups, as evidenced by different ratios $E_A/Delta E$. We infer that the ratio $E_A/Delta E$ is a suitable parameter to identify the tendency of ethylene endgroups towards glass-like freezing.
The recently proposed multiferroic state of the charge-transfer salt {kappa}-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Cl [P. Lunkenheimer et al., Nature Mater., vol. 11, pp. 755-758, Sept. 2012] has been studied by dc-conductivity, magnetic susceptibility and meas urements of the dielectric constant on various, differently prepared single crystals. In the majority of crystals we confirm the existence of an order-disorder-type ferroelectric state which coincides with antiferromagnetic order. This phenomenology rules out scenarios which consider an inhomogeneous, short-range-ordered ferroelectric state. Measurements of the dielectric constant and the magnetic susceptibility on the same crystals reveal that both transitions lie very close to each other or even collapse, indicating that both types of order are intimately coupled to each other. We address issues of the frequency dependence of the dielectric constant {epsilon} and the dielectric loss {epsilon} and discuss sample-to-sample variations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا