ترغب بنشر مسار تعليمي؟ اضغط هنا

The GALAH Survey: A new constraint on cosmological lithium and Galactic lithium evolution from warm dwarf stars

58   0   0.0 ( 0 )
 نشر من قبل Xudong Gao
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Lithium depletion and enrichment in the cosmos is not yet well understood. To help tighten constraints on stellar and Galactic evolution models, we present the largest high-resolution analysis of Li abundances A(Li) to date, with results for over 100 000 GALAH field stars spanning effective temperatures $5900,mathrm{K} lesssim rm{T_{eff}} lesssim7000,mathrm{K}$ and metallicities $-3 lesssim rm[Fe/H] lesssim +0.5$. We separated these stars into two groups, on the warm and cool side of the so-called Li-dip, a localised region of the Kiel diagram wherein lithium is severely depleted. We discovered that stars in these two groups show similar trends in the A(Li)-[Fe/H] plane, but with a roughly constant offset in A(Li) of 0.4 dex, the warm group having higher Li abundances. At $rm[Fe/H]gtrsim-0.5$, a significant increasing in Li abundance with increasing metallicity is evident in both groups, signalling the onset of significant Galactic production. At lower metallicity, stars in the cool group sit on the Spite plateau, showing a reduced lithium of around 0.4 dex relative to the primordial value predicted from Big Bang nucleosynthesis (BBN). However, stars in the warm group between [Fe/H] = -1.0 and -0.5, form an elevated plateau that is largely consistent with the BBN prediction. This may indicate that these stars in fact preserve the primordial Li produced in the early Universe.

قيم البحث

اقرأ أيضاً

We investigate the properties of 1262 red giant stars with high photospheric abundances of lithium observed by the GALAH and Ktwo-HERMES surveys, and discuss them in the context of proposed mechanisms for lithium enrichment and re-depletion in giant stars. We confirm that Li-rich giants are rare, making up only 1.2 per cent of our giant star sample. We use stellar parameters from the third public data release from the GALAH survey and a Bayesian isochrone analysis to divide the sample into first-ascent red giant branch and red clump stars, and confirm these classifications using asteroseismic data from Ktwo. We find that red clump stars are 2.5 times as likely to be lithium-rich as red giant branch stars, in agreement with other recent work. The probability for a star to be lithium-rich is affected by a number of factors, though the causality in those correlations is not entirely clear. We show for the first time that primary and secondary red clump stars have distinctly different lithium enrichment patterns. The data set discussed here is large and heterogeneous in terms of evolutionary phase, metallicity, rotation rate and mass. We expect that if the various mechanisms that have been proposed for lithium enrichment in evolved stars are in fact active, they should all contribute to this sample of lithium-rich giants at some level.
Identifying and characterizing young stars in the Solar neighbourhood is essential to find and describe planets in the early stages of their evolution. This work seeks to identify nearby young stars showing a Lithium 6707.78$,AA$ absorption line in t he GALAH survey. A robust, data-driven approach is used to search for corresponding templates in the pool of 434,215 measured dwarf spectra in the survey. It enables a model-free search for best-matching spectral templates for all stars, including M dwarfs with strong molecular absorption bands. 3147 stars have been found to have measurable Lithium: 1408 G and 892 K0-K5 dwarfs (EW(Li)$>$0.1$,$AA), 335 K5-K9 ($>$0.07$,$AA) and 512 M0$sim$M4 dwarfs ($>$0.05$,$AA). Stars with such Lithium features are used to investigate the possibility of searching for young stars above the main sequence based merely on their parallaxes and broad-band photometry. Selection of young stars above the main sequence is highly effective for M dwarfs, moderately effective for K dwarfs and ineffective for G dwarfs. Using a combination of the Lithium information and the complete 6D kinematics from Gaia and GALAH, 305 new candidate moving group members have been found, 123 of which belong to the Scorpius-Centaurus association, 36 to the Pleiades and 25 to the Hyades clusters.
Reconstructing the Galactic evolution of lithium (Li) is the main tool used to constrain the source(s) of Li enrichment in the Galaxy. Recent results have suggested a decline in Li at supersolar metallicities, which may indicate reduced production. W e exploit the unique characteristics of the Gaia-ESO Survey open star cluster sample to further investigate this issue and to better constrain the evolution of Li at high metallicity. We trace the the upper envelope of Li abundance versus metallicity evolution using 18 clusters and considering members that should not have suffered any Li depletion. At variance with previous claims, we do not find any evidence of a Li decrease at high metallicity. The most metal-rich clusters in the sample ([Fe/H] about 0.3) actually show the highest Li abundances, with A(Li) > 3.4. Our results clearly show that previous findings, which were based on field stars, were affected by selection effects. The metal-rich population in the solar neighbourhood is composed of relatively old and cool stars that have already undergone some Li depletion; hence, their measured Li does not represent the initial interstellar medium abundance, but a lower limit to it.
A discrepancy has emerged between the cosmic lithium abundance inferred by the WMAP satellite measurement coupled with the prediction of the standard big-bang nucleosynthesis theory, and the constant Li abundance measured in metal-poor halo dwarf sta rs (the so-called Spite plateau). Several models are being proposed to explain this discrepancy, involving either new physics, in situ depletion, or the efficient depletion of Li in the pristine Galaxy by a generation of massive first stars. The realm of possibilities may be narrowed considerably by observing stellar populations in different galaxies, which have experienced different evolutionary histories. The WCen stellar system is commonly considered as the remnant of a dwarf galaxy accreted by the Milky Way (MW). We investigate the Li content of a conspicuous sample of unevolved stars in this object. We obtained moderate resolution (R=17000) spectra for 91 main-sequence/early sub-giant branch (MS/SGB) WCen stars using the FLAMES-GIRAFFE/VLT spectrograph. Li abundances were derived by matching the equivalent width of the LiI resonance doublet at 6708A, to the prediction of synthetic spectra computed with different Li abundances. Synthetic spectra were computed using the SYNTHE code along with ATLAS9 model atmospheres. The stars effective temperatures are derived by fitting the wings of the Ha line with synthetic profiles. We obtain a mean content of A(Li)=2.19+-0.14~dex for WCen MS/SGB stars. This is comparable to what is observed in Galactic halo field stars of similar metallicities and temperatures. The Spite plateau seems to be an ubiquitous feature of old, warm metal-poor stars. It exists also in external galaxies, if we accept the current view about the origin of WCen. This implies that the mechanism(s) that causes the cosmological lithium problem may be the same in the MW and other galaxies.
We exploit the unique characteristics of a sample of open clusters (OCs) and field stars for which high-precision 7Li abundances and stellar parameters are homogeneously derived by the Gaia-ESO Survey (GES). We derive possibly undepleted 7Li abundanc es for 26 OCs and star forming regions with ages from young to old spanning a large range of Galactocentric distances, which allows us to reconstruct the local late Galactic evolution of lithium as well as its current abundance gradient along the disc. Field stars are added to look further back in time and to constrain 7Li evolution in other Galactic components. The data are then compared to theoretical tracks from chemical evolution models that implement different 7Li forges. We find that the upper envelope of the 7Li abundances measured in field stars of nearly solar metallicities traces very well the level of lithium enrichment attained by the ISM as inferred from observations of cluster stars. We confirm previous findings that the abundance of 7Li in the solar neighbourhood does not decrease at supersolar metallicity. The comparison of the data with the chemical evolution model predictions favours a scenario in which the majority of the 7Li abundance in meteorites comes from novae. Current data also seem to suggest that the nova rate flattens out at later times. This requirement might have implications for the masses of the white dwarf nova progenitors and deserves further investigation. Neutrino-induced reactions taking place in core-collapse supernovae also produce some fresh lithium. This likely makes a negligible contribution to the meteoritic abundance, but could be responsible for a mild increase of the 7Li abundance in the ISM of low-metallicity systems that would counterbalance the astration processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا