ﻻ يوجد ملخص باللغة العربية
We consider test particle motion in a gravitational field generated by a homogeneous circular ring placed in $n$-dimensional Euclidean space. We observe that there exist no stable stationary orbits in $n=6, 7, ldots, 10$ but exist in $n=3, 4, 5$ and clarify the regions in which they appear. In $n=3$, we show that the separation of variables of the Hamilton-Jacobi equation does not occur though we find no signs of chaos for stable bound orbits. Since the system is integrable in $n=4$, no chaos appears. In $n=5$, we find some chaotic stable bound orbits. Therefore, this system is nonintegrable at least in $n=5$ and suggests that the timelike geodesic system in the corresponding black ring spacetimes is nonintegrable.
Newtonian gravitational potential sourced by a homogeneous circular ring in arbitrary dimensional Euclidean space takes a simple form if the spatial dimension is even. In contrast, if the spatial dimension is odd, it is given in a form that includes
In this article, we explore the geodesics motion of neutral test particles and the process of energy extraction from a regular rotating Hayward black hole. We analyse the effect of spin, as well as deviation parameter g, on ergoregion, event horizon
For a stationary, axisymmetric, asymptotically flat, ultra-compact [$i.e.$ containing light-rings (LRs)] object, with a $mathbb{Z}_2$ north-south symmetry fixing an equatorial plane, we establish that the structure of timelike circular orbits (TCOs)
We consider the properties of a static axially symmetric wormhole described by an exact solution of Einsteins field equations and investigate how we can distinguish such a hypothetical object from a black hole. To this aim, we explore the motion of t
The motion of spinning test particles around a traversable wormhole is investigated using the Mathisson Papapetrous Dixon equations, which couple the Riemann tensor with the antisymmetric tensor $S^{ab}$, related to the spin of the particle. Hence, w