ﻻ يوجد ملخص باللغة العربية
Work on generalizations of the Cohen-Lenstra and Cohen-Martinet heuristics has drawn attention to probability measures on the space of isomorphism classes of profinite groups. As is common in probability theory, it would be desirable to know that these measures are determined by their moments, which in this context are the expected number of surjections to a fixed finite group. We show a wide class of measures, including those appearing in a recent paper of Liu, Wood, and Zurieck-Brown, have this property. The method is to work locally with groups that are extensions of a fixed group by a product of finite simple groups. This eventually reduces the problem to the case of powers of a fixed finite simple group, which can be handled by a simple explicit calculation. We can also prove a similar theorem for random modules over an algebra.
We present a generic algorithm for computing discrete logarithms in a finite abelian p-group H, improving the Pohlig-Hellman algorithm and its generalization to noncyclic groups by Teske. We then give a direct method to compute a basis for H without
Refining a result of Erdos and Mays, we give asymptotic series expansions for the functions $A(x)-C(x)$, the count of $nleq x$ for which every group of order $n$ is abelian (but not all cyclic), and $N(x)-A(x)$, the count of $nleq x$ for which every
A $Gamma$-magic rectangle set $MRS_{Gamma}(a, b; c)$ of order $abc$ is a collection of $c$ arrays $(atimes b)$ whose entries are elements of group $Gamma$, each appearing once, with all row sums in every rectangle equal to a constant $omegain Gamma$
We deal with some pcf investigations mostly motivated by abelian group theory problems and deal their applications to test problems (we expect reasonably wide applications). We prove almost always the existence of aleph_omega-free abelian groups with
In previous work, the authors confirmed the speculation of J. G. Thompson that certain multiquadratic fields are generated by specified character values of sufficiently large alternating groups $A_n$. Here we address the natural generalization of thi