ترغب بنشر مسار تعليمي؟ اضغط هنا

A consensus-based approach for parameter and state estimation of agro-hydrological system

97   0   0.0 ( 0 )
 نشر من قبل Jinfeng Liu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The development of advanced closed-loop irrigation systems requires accurate soil moisture information. In this work, we address the problem of soil moisture estimation for the agro-hydrological systems in a robust and reliable manner. A nonlinear state-space model is established based on the discretization of the Richards equation to describe the dynamics of agro-hydrological systems. We consider that model parameters are unknown and need to be estimated together with the states simultaneously. We propose a consensus-based estimation mechanism, which comprises two main parts: 1) a distributed extended Kalman filtering algorithm used to estimate several model parameters; and 2) a distributed moving horizon estimation algorithm used to estimate the state variables and one remaining model parameter. Extensive simulations are conducted, and comparisons with existing methods are made to demonstrate the effectiveness and superiority of the proposed approach. In particular, the proposed approach can provide accurate soil moisture estimate even when poor initial guesses of the parameters and the states are used, which can be challenging to be handled using existing algorithms.



قيم البحث

اقرأ أيضاً

The integration of renewables into electrical grids calls for optimization-based control schemes requiring reliable grid models. Classically, parameter estimation and optimization-based control is often decoupled, which leads to high system operation cost in the estimation procedure. The present work proposes a method for simultaneously minimizing grid operation cost and optimally estimating line parameters based on methods for the optimal design of experiments. This method leads to a substantial reduction in cost for optimal estimation and in higher accuracy in the parameters compared with standard Optimal Power Flow and maximum-likelihood estimation. We illustrate the performance of the proposed method on a benchmark system.
State and parameter estimation is essential for process monitoring and control. Observability plays an important role in both state and parameter estimation. In simultaneous state and parameter estimation, the parameters are often augmented as extra states of the original system. When the augmented system is observable, various existing state estimation approaches may be used to estimate the states and parameters simultaneously. However, when the augmented system is not observable, how we should proceed to maximally extract the information contained in the measured outputs is not clear. This paper concerns about simultaneous state and parameter estimation when the augmented system is not fully observable. Specifically, we first show how sensitivity analysis is related to observability of a dynamical system, and then illustrate how it may be used to select variables for simultaneous estimation. We also propose a moving horizon state estimation (MHE) design that can use the variable selection results in a natural way. Extensive simulations are carried out to show the efficiency of the proposed approach.
This paper models a class of hierarchical cyber-physical systems and studies its associated consensus problem. The model has a pyramid structure, which reflects many realistic natural or human systems. By analyzing the spectrum of the coupling matrix , it is shown that all nodes in the physical layer can reach a consensus based on the proposed distributed protocols without interlayer delays. Then, the result is extended to the case with interlayer delays. A necessary and sufficient condition for consensus-seeking is derived from the frequency domain perspective, which describes a permissible range of the delay. Finally, the application of the proposed model in the power-sharing problem is simulated to demonstrate the effectiveness and significance of the analytic results.
The state estimation problem can be solved through different methods. In terms of robustness, an effective approach is represented by the Least Absolute Value (LAV) estimator, though vulnerable to leverage points. Based on a previously proposed theor em, in this paper we enunciate, and rigorously demonstrate, a new lemma that proves the identifiability of leverage points in LAV-based state estimation. On the basis of these theoretical foundations, we propose an algorithm for leverage point identification whose performance is validated by means of extensive numerical simulations and compared against more traditional approaches, like Projection Statistics (PS). The obtained results confirm that the proposed method outperforms PS and represents a significant enhancement for LAV-based state estimators as it correctly identifies all the leverage points, independently of the accuracy or the presence of measurement gross errors. A dedicated application example with respect to power system state estimation is finally included and discussed.
In this paper we propose a novel method to establish stability and, in addition, convergence to a consensus state for a class of discrete-time Multi-Agent System (MAS) evolving according to nonlinear heterogeneous local interaction rules which is not based on Lyapunov function arguments. In particular, we focus on a class of discrete-time MASs whose global dynamics can be represented by sub-homogeneous and order-preserving nonlinear maps. This paper directly generalizes results for sub-homogeneous and order-preserving linear maps which are shown to be the counterpart to stochastic matrices thanks to nonlinear Perron-Frobenius theory. We provide sufficient conditions on the structure of local interaction rules among agents to establish convergence to a fixed point and study the consensus problem in this generalized framework as a particular case. Examples to show the effectiveness of the method are provided to corroborate the theoretical analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا