ﻻ يوجد ملخص باللغة العربية
We classify periodically driven quantum systems on a one-dimensional lattice, where the driving process is local and subject to a chiral symmetry condition. The analysis is in terms of the unitary operator at a half-period and also covers systems in which this operator is implemented directly, and does not necessarily arise from a continuous time evolution. The full-period evolution operator is called a quantum walk, and starting the period at half time, which is called choosing another timeframe, leads to a second quantum walk. We assume that these walks have gaps at the spectral points $pm1$, up to at most finite dimensional eigenspaces. Walks with these gap properties have been completely classified by triples of integer indices (arXiv:1611.04439). These indices, taken for both timeframes, thus become classifying for half-step operators. In addition a further index quantity is required to classify the half step operators, which decides whether a continuous local driving process exists. In total, this amounts to a classification by five independent indices. We show how to compute these as Fredholm indices of certain chiral block operators, show the completeness of the classification, and clarify the relations to the two sets of walk indices. Within this theory we prove bulk-edge correspondence, where second timeframe allows to distinguish between symmetry protected edge states at $+1$ and $-1$ which is not possible with only one timeframe. We thus resolve an apparent discrepancy between our above mentioned index classification for walks, and indices defined (arXiv:1208.2143). The discrepancy turns out to be one of different definitions of the term `quantum walk.
Quantum walks have attracted attention as a promising platform realizing topological phenomena and many physicists have introduced various types of indices to characterize topologically protected bound states that are robust against perturbations. In
Given its importance to many other areas of physics, from condensed matter physics to thermodynamics, time-reversal symmetry has had relatively little influence on quantum information science. Here we develop a network-based picture of time-reversal
We propose a `Floquet engineering formalism to systematically design a periodic driving protocol in order to stroboscopically realize the desired system starting from a given static Hamiltonian. The formalism is applicable to quantum systems which ha
We give a new determinant expression for the characteristic polynomial of the bond scattering matrix of a quantum graph G. Also, we give a decomposition formula for the characteristic polynomial of the bond scattering matrix of a regular covering of
Counterdiabatic (CD) driving presents a way of generating adiabatic dynamics at arbitrary pace, where excitations due to non-adiabaticity are exactly compensated by adding an auxiliary driving term to the Hamiltonian. While this CD term is theoretica