ترغب بنشر مسار تعليمي؟ اضغط هنا

The R-Process Alliance: The Peculiar Chemical Abundance Pattern of RAVE J183013.5-455510

94   0   0.0 ( 0 )
 نشر من قبل Vinicius Placco
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the spectroscopic analysis of RAVE J183013.5-455510, an extremely metal-poor star, highly enhanced in CNO, and with discernible contributions from the rapid neutron-capture process. There is no evidence of binarity for this object. At [Fe/H]=-3.57, this is one of the lowest metallicity stars currently observed, with 18 measured abundances of neutron-capture elements. The presence of Ba, La, and Ce abundances above the Solar System r-process predictions suggest that there must have been a non-standard source of r-process elements operating at such low metallicities. One plausible explanation is that this enhancement originates from material ejected at unusually fast velocities in a neutron star merger event. We also explore the possibility that the neutron-capture elements were produced during the evolution and explosion of a rotating massive star. In addition, based on comparisons with yields from zero-metallicity faint supernova, we speculate that RAVE J1830-4555 was formed from a gas cloud pre-enriched by both progenitor types. From analysis based on Gaia DR2 measurements, we show that this star has orbital properties similar to the Galactic metal-weak thick-disk stellar population.

قيم البحث

اقرأ أيضاً

77 - Madelyn Cain 2018
We present detailed chemical abundances of three new bright (V ~ 11), extremely metal-poor ([Fe/H] ~ -3.0), r-process-enhanced halo red giants based on high-resolution, high-S/N Magellan/MIKE spectra. We measured abundances for 20-25 neutron-capture elements in each of our stars. J1432-4125 is among the most r-process rich r-II stars, with [Eu/Fe]= +1.44+-0.11. J2005-3057 is an r-I star with [Eu/Fe] = +0.94+-0.07. J0858-0809 has [Eu/Fe] = +0.23+-0.05 and exhibits a carbon abundance corrected for evolutionary status of [C/Fe]_corr = +0.76, thus adding to the small number of known carbon-enhanced r-process stars. All three stars show remarkable agreement with the scaled solar r-process pattern for elements above Ba, consistent with enrichment of the birth gas cloud by a neutron star merger. The abundances for Sr, Y, and Zr, however, deviate from the scaled solar pattern. This indicates that more than one distinct r-process site might be responsible for the observed neutron-capture element abundance pattern. Thorium was detected in J1432-4125 and J2005-3057. Age estimates for J1432-4125 and J2005-3057 were adopted from one of two sets of initial production ratios each by assuming the stars are old. This yielded individual ages of 12+-6 Gyr and 10+-6 Gyr, respectively.
64 - Ian U. Roederer 2018
We present a detailed abundance analysis of the bright (V = 9.02), metal-poor ([Fe/H] = -1.47 +/- 0.08) field red horizontal-branch star HD 222925, which was observed as part of an ongoing survey by the R-Process Alliance. We calculate stellar parame ters and derive abundances for 46 elements based on 901 lines examined in a high-resolution optical spectrum obtained using the Magellan Inamori Kyocera Echelle spectrograph. We detect 28 elements with 38 <= Z <= 90; their abundance pattern is a close match to the Solar r-process component. The distinguishing characteristic of HD 222925 is an extreme enhancement of r-process elements ([Eu/Fe] = +1.33 +/- 0.08, [Ba/Eu] = -0.78 +/- 0.10) in a moderately metal-poor star, so the abundance of r-process elements is the highest ([Eu/H] = -0.14 +/- 0.09) in any known r-process-enhanced star. The abundance ratios among lighter (Z <= 30) elements are typical for metal-poor stars, indicating that production of these elements was dominated by normal Type II supernovae, with no discernible contributions from Type Ia supernovae or asymptotic giant branch stars. The chemical and kinematic properties of HD 222925 suggest it formed in a low-mass dwarf galaxy, which was enriched by a high-yield r-process event before being disrupted by interaction with the Milky Way.
Extensive progress has been recently made into our understanding of heavy element production via the $r$-process in the Universe, specifically with the first observed neutron star binary merger (NSBM) event associated with the gravitational wave sign al detected by LIGO, GW170817. The chemical abundance patterns of metal-poor $r$-process-enhanced stars provides key evidence into the dominant site(s) of the $r$-process, and whether NSBMs are sufficiently frequent or prolific $r$-process sources to be responsible for the majority of $r$-process material in the Universe. We present atmospheric stellar parameters (using a Non-Local Thermodynamic Equilibrium analysis) and abundances from a detailed analysis of 141 metal-poor stars, carried out as part of the $R$-Process Alliance (RPA) effort. We obtained high-resolution snapshot spectroscopy of the stars using the MIKE spectrograph on the 6.5m Magellan Clay telescope at Las Campanas Observatory in Chile. We find 10 new highly enhanced $r$-II (with [Eu/Fe] $> +1.0$), 62 new moderately enhanced $r$-I ($+0.3 < $ [Eu/Fe] $le +1.0$) and 17 new limited-$r$ ([Eu/Fe] $< +0.3$) stars. Among those, we find 17 new carbon-enhanced metal-poor (CEMP) stars, of which five are CEMP-no. We also identify one new $s$-process-enhanced ([Ba/Eu ]$ > +0.5$), and five new $r/s$ ($0.0 < $ [Ba/Eu] $ < +0.5$) stars. In the process, we discover a new ultra metal-poor (UMP) star at [Fe/H]=$-$4.02. One of the $r$-II stars shows a deficit in $alpha$ and Fe-peak elements, typical of dwarf galaxy stars. Our search for $r$-process-enhanced stars by RPA efforts, has already roughly doubled the known $r$-process sample.
A new moderately r-process-enhanced metal-poor star, RAVE J093730.5-062655, has been identified in the Milky Way halo as part of an ongoing survey by the R-Process Alliance. The temperature and surface gravity indicate that J0937-0626 is likely a hor izontal branch star. At [Fe/H] = -1.86, J0937-0626 is found to have subsolar [X/Fe] ratios for nearly every light, alpha, and Fe-peak element. The low [alpha/Fe] ratios can be explained by an ~0.6 dex excess of Fe; J0937-0626 is therefore similar to the subclass of iron-enhanced metal-poor stars. A comparison with Milky Way field stars at [Fe/H] = -2.5 suggests that J0937-0626 was enriched in material from an event, possibly a Type Ia supernova, that created a significant amount of Cr, Mn, Fe, and Ni and smaller amounts of Ca, Sc, Ti, and Zn. The r-process enhancement of J0937-0626 is likely due to a separate event, which suggests that its birth environment was highly enriched in r-process elements. The kinematics of J0937-0626, based on Gaia DR2 data, indicate a retrograde orbit in the Milky Way halo; J0937-0626 was therefore likely accreted from a dwarf galaxy that had significant r-process enrichment.
This compilation is the fourth data release from the $R$-Process Alliance (RPA) search for $r$-process-enhanced stars, and the second release based on snapshot high-resolution ($R sim 30,000$) spectra collected with the du Pont 2.5m Telescope. In thi s data release, we propose a new delineation between the $r$-I and $r$-II stellar classes at $mathrm{[Eu/Fe]} = +0.7$, instead of the empirically chosen $mathrm{[Eu/Fe]} = +1.0$ level previously in use, based on statistical tests of the complete set of RPA data released to date. We also statistically justify the minimum level of [Eu/Fe] for definition of the $r$-I stars, [Eu/Fe] $> +0.3$. Redefining the separation between $r$-I and $r$-II stars will aid in analysis of the possible progenitors of these two classes of stars and whether these signatures arise from separate astrophysical sources at all. Applying this redefinition to previous RPA data, the number of identified $r$-II and $r$-I stars changes to 51 and 121, respectively, from the initial set of data releases published thus far. In this data release, we identify 21 new $r$-II, 111 new $r$-I (plus three re-identified), and 7 new (plus one re-identified) limited-$r$ stars out of a total of 232 target stars, resulting in a total sample of 72 new $r$-II stars, 232 new $r$-I stars, and 42 new limited-$r$ stars identified by the RPA to date.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا