ﻻ يوجد ملخص باللغة العربية
Deep learning has been successful for many computer vision tasks due to the availability of shared and centralised large-scale training data. However, increasing awareness of privacy concerns poses new challenges to deep learning, especially for human subject related recognition such as person re-identification (Re-ID). In this work, we solve the Re-ID problem by decentralised learning from non-shared private training data distributed at multiple user sites of independent multi-domain label spaces. We propose a novel paradigm called Federated Person Re-Identification (FedReID) to construct a generalisable global model (a central server) by simultaneously learning with multiple privacy-preserved local models (local clients). Specifically, each local client receives global model updates from the server and trains a local model using its local data independent from all the other clients. Then, the central server aggregates transferrable local model updates to construct a generalisable global feature embedding model without accessing local data so to preserve local privacy. This client-server collaborative learning process is iteratively performed under privacy control, enabling FedReID to realise decentralised learning without sharing distributed data nor collecting any centralised data. Extensive experiments on ten Re-ID benchmarks show that FedReID achieves compelling generalisation performance beyond any locally trained models without using shared training data, whilst inherently protects the privacy of each local client. This is uniquely advantageous over contemporary Re-ID methods.
In recent years, supervised person re-identification (re-ID) models have received increasing studies. However, these models trained on the source domain always suffer dramatic performance drop when tested on an unseen domain. Existing methods are pri
With the assistance of sophisticated training methods applied to single labeled datasets, the performance of fully-supervised person re-identification (Person Re-ID) has been improved significantly in recent years. However, these models trained on a
Unsupervised domain adaptation (UDA) methods for person re-identification (re-ID) aim at transferring re-ID knowledge from labeled source data to unlabeled target data. Although achieving great success, most of them only use limited data from a singl
Person Re-identification (re-id) aims to match people across non-overlapping camera views in a public space. It is a challenging problem because many people captured in surveillance videos wear similar clothes. Consequently, the differences in their
Since human-labeled samples are free for the target set, unsupervised person re-identification (Re-ID) has attracted much attention in recent years, by additionally exploiting the source set. However, due to the differences on camera styles, illumina