ﻻ يوجد ملخص باللغة العربية
We report on the detection of pulsations of three pulsating subdwarf B stars observed by the TESS satellite and our results of mode identification in these stars based on an asymptotic period relation. SB 459 (TIC 067584818), SB 815 (TIC 169285097) and PG 0342+026 (TIC 457168745) have been monitored during single sectors resulting in 27 days coverage. These datasets allowed for detecting, in each star, a few tens of frequencies, which we interpreted as stellar oscillations. We found no multiplets, though we partially constrained mode geometry by means of period spacing, which recently became a key tool in analyses of pulsating subdwarf B stars. Standard routine that we have used allowed us to select candidates for trapped modes that surely bear signatures of non-uniform chemical profile inside the stars. We have also done statistical analysis using collected spectroscopic and asteroseismic data of previously known subdwarf B stars along with our three stars. Making use of high precision trigonometric parallaxes from the Gaia mission and spectral energy distributions we converted atmospheric parameters to stellar ones. Radii, masses and luminosities are close to their canonical values for extreme horizontal branch stars. In particular, the stellar masses are close to the canonical one of 0.47 M$_odot$ for all three stars but uncertainties on the mass are large. The results of the analyses presented here will provide important constrains for asteroseismic modelling.
Hot subdwarfs are evolved low--mass stars that have survived core helium ignition and are now in (or recently finished with) the core helium burning stage. At the hot end of the Horizontal Branch (HB), many of these stars are multiperiodic pulsators.
We present the results of a Hubble Space Telescope program to search for pulsating hot subdwarfs in the core of NGC 2808. These observations were motivated by the recent discovery of such stars in the outskirts of omega Cen. Both NGC 2808 and omega C
Using high-cadence observations from the Zwicky Transient Facility at low Galactic latitudes, we have discovered a new class of pulsating, hot, compact stars. We have found four candidates, exhibiting blue colors ($g-rleq-0.1$ mag), pulsation amplitu
We present photometric and spectroscopic analyses of gravity (g-mode) long-period pulsating hot subdwarf B (sdB) stars. We perform a detailed asteroseismic and spectroscopic analysis of five pulsating sdB stars observed with {it TESS} aiming at the g
In the last decade or so, there have been numerous searches for hot subdwarfs in close binaries. There has been little to no attention paid to wide binaries however. The advantages of understanding these systems can be many. The stars can be assumed