ﻻ يوجد ملخص باللغة العربية
This letter reports the modification of magnetism in a magnetic insulator Y3Fe5O12 thin film by topological surface states (TSS) in an adjacent topological insulator Bi2Se3 thin film. Ferromagnetic resonance measurements show that the TSS in Bi2Se3 produces a perpendicular magnetic anisotropy, results in a decrease in the gyromagnetic ratio, and enhances the damping in Y3Fe5O12. Such TSS-induced changes become more pronounced as the temperature decreases from 300 K to 50 K. These results suggest a completely new approach for control of magnetism in magnetic thin films.
The emergence of topological order in graphene is in great demand for the realization of quantum spin Hall states. Recently, it is theoretically proposed that the spin textures of surface states in topological insulator can be directly transferred to
Three-dimensional topological insulators (TIs) have emerged as a unique state of quantum matter and generated enormous interests in condensed matter physics. The surfaces of a three dimensional (3D) TI are composed of a massless Dirac cone, which is
In the following paper we investigate the critical temperature $T_c$ behavior in the two-dimensional S/TI (S denotes superconductor and TI - topological insulator) junction with a proximity induced in-plane helical magnetization in the TI surface. Th
At an interface between a topological insulator (TI) and a conventional superconductor (SC), superconductivity has been predicted to change dramatically and exhibit novel correlations. In particular, the induced superconductivity by an $s$-wave SC in
Inducing long-range magnetic order in three-dimensional topological insulators can gap the Diraclike metallic surface states, leading to exotic new phases such as the quantum anomalous Hall effect or the axion insulator state. These magnetic topologi