ترغب بنشر مسار تعليمي؟ اضغط هنا

Terahertz signatures of ultrafast Dirac fermion relaxation at the surface of topological insulators at room temperature

76   0   0.0 ( 0 )
 نشر من قبل Sergey Kovalev
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Topologically-protected surface states present rich physics and promising spintronic, optoelectronic and photonic applications that require a proper understanding of their ultrafast carrier dynamics. Here, we investigate these dynamics in topological insulators (TIs) of the bismuth and antimony chalcogenide family, where we isolate the response of Dirac fermions at the surface from the response of bulk carriers by combining photoexcitation with below-bandgap terahertz (THz) photons with TI samples with varying Fermi level, including one sample with the Fermi level located within the bandgap. We identify distinctly faster relaxation of charge carriers in the topologically-protected Dirac surface states (few hundred femtoseconds), compared to bulk carriers (few picoseconds). In agreement with such fast cooling dynamics, we observe THz harmonic generation without any saturation effects for increasing incident fields, unlike graphene which exhibits strong saturation. This opens up promising avenues for increased THz nonlinear conversion efficiencies, and high-bandwidth optoelectronic and spintronic information and communication applications.

قيم البحث

اقرأ أيضاً

Topological insulators are new states of quantum matter with surface states protected by the time-reversal symmetry. In this work, we perform first-principle electronic structure calculations for $Sb_2Te_3$, $Sb_2Se_3$, $Bi_2Te_3$ and $Bi_2Se_3$ crys tals. Our calculations predict that $Sb_2Te_3$, $Bi_2Te_3$ and $Bi_2Se_3$ are topological insulators, while $Sb_2Se_3$ is not. In particular, $Bi_2Se_3$ has a topologically non-trivial energy gap of $0.3 eV$, suitable for room temperature applications. We present a simple and unified continuum model which captures the salient topological features of this class of materials. These topological insulators have robust surface states consisting of a single Dirac cone at the $Gamma$ point.
76 - Dong Wu , Y. C. Ma , Y. Y. Niu 2018
Charge-density wave (CDW) is one of the most fundamental quantum phenomena in solids. Different from ordinary metals in which only single particle excitations exist, CDW also has collective excitations and can carry electric current in a collective f ashion. Manipulating this collective condensation for applications has long been a goal in the condensed matter and materials community. Here we show that the CDW system of 1T-TaS2 is highly sensitive to light directly from visible down to terahertz, with current responsivities around the order of ~1 AW-1 at room temperature. Our findings open a new avenue for realizing uncooled, ultrabroadband and sensitive photoelectronics continuously down to terahertz spectral range.
We present a x-ray dichroism study of graphite surfaces that addresses the origin and magnitude of ferromagnetism in metal-free carbon. We find that, in addition to carbon $pi$ states, also hydrogen-mediated electronic states exhibit a net spin polar ization with significant magnetic remanence at room temperature. The observed magnetism is restricted to the top $approx$10 nm of the irradiated sample where the actual magnetization reaches $ simeq 15$ emu/g at room temperature. We prove that the ferromagnetism found in metal-free untreated graphite is intrinsic and has a similar origin as the one found in proton bombarded graphite.
Topological matter is known to exhibit unconventional surface states and anomalous transport owing to unusual bulk electronic topology. In this study, we use photoemission spectroscopy and quantum transport to elucidate the topology of the room tempe rature magnet Co$_2$MnGa. We observe sharp bulk Weyl fermion line dispersions indicative of nontrivial topological invariants present in the magnetic phase. On the surface of the magnet, we observe electronic wave functions that take the form of drumheads, enabling us to directly visualize the crucial components of the bulk-boundary topological correspondence. By considering the Berry curvature field associated with the observed topological Weyl fermion lines, we quantitatively account for the giant anomalous Hall response observed in our samples. Our experimental results suggest a rich interplay of strongly correlated electrons and topology in this quantum magnet.
306 - Chi Tang , Qi Song , Cui-Zu Chang 2018
This work demonstrates dramatically modified spin dynamics of magnetic insulator (MI) by the spin-momentum locked Dirac surface states of the adjacent topological insulator (TI) which can be harnessed for spintronic applications. As the Bi-concentrat ion x is systematically tuned in 5 nm thick (BixSb1-x)2Te3 TI film, the weight of the surface relative to bulk states peaks at x = 0.32 when the chemical potential approaches the Dirac point. At this concentration, the Gilbert damping constant of the precessing magnetization in 10 nm thick Y3Fe5O12 MI film in the MI/TI heterostructures is enhanced by an order of magnitude, the largest among all concentrations. In addition, the MI acquires additional strong magnetic anisotropy that favors the in-plane orientation with similar Bi-concentration dependence. These extraordinary effects of the Dirac surface states distinguish TI from other materials such as heavy metals in modulating spin dynamics of the neighboring magnetic layer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا