ﻻ يوجد ملخص باللغة العربية
The 3D Morphable Model (3DMM) is a powerful statistical tool for representing 3D face shapes. To build a 3DMM, a training set of face scans in full point-to-point correspondence is required, and its modeling capabilities directly depend on the variability contained in the training data. Thus, to increase the descriptive power of the 3DMM, establishing a dense correspondence across heterogeneous scans with sufficient diversity in terms of identities, ethnicities, or expressions becomes essential. In this manuscript, we present a fully automatic approach that leverages a 3DMM to transfer its dense semantic annotation across raw 3D faces, establishing a dense correspondence between them. We propose a novel formulation to learn a set of sparse deformation components with local support on the face that, together with an original non-rigid deformation algorithm, allow the 3DMM to precisely fit unseen faces and transfer its semantic annotation. We extensively experimented our approach, showing it can effectively generalize to highly diverse samples and accurately establish a dense correspondence even in presence of complex facial expressions. The accuracy of the dense registration is demonstrated by building a heterogeneous, large-scale 3DMM from more than 9,000 fully registered scans obtained by joining three large datasets together.
Embedding 3D morphable basis functions into deep neural networks opens great potential for models with better representation power. However, to faithfully learn those models from an image collection, it requires strong regularization to overcome ambi
In this paper, we bring together two divergent strands of research: photometric face capture and statistical 3D face appearance modelling. We propose a novel lightstage capture and processing pipeline for acquiring ear-to-ear, truly intrinsic diffuse
In this paper, we provide a detailed survey of 3D Morphable Face Models over the 20 years since they were first proposed. The challenges in building and applying these models, namely capture, modeling, image formation, and image analysis, are still a
Many recent works have reconstructed distinctive 3D face shapes by aggregating shape parameters of the same identity and separating those of different people based on parametric models (e.g., 3D morphable models (3DMMs)). However, despite the high ac
Most 3D face reconstruction methods rely on 3D morphable models, which disentangle the space of facial deformations into identity geometry, expressions and skin reflectance. These models are typically learned from a limited number of 3D scans and thu