ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement

195   0   0.0 ( 0 )
 نشر من قبل Xin Liu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Telehealth and remote health monitoring have become increasingly important during the SARS-CoV-2 pandemic and it is widely expected that this will have a lasting impact on healthcare practices. These tools can help reduce the risk of exposing patients and medical staff to infection, make healthcare services more accessible, and allow providers to see more patients. However, objective measurement of vital signs is challenging without direct contact with a patient. We present a video-based and on-device optical cardiopulmonary vital sign measurement approach. It leverages a novel multi-task temporal shift convolutional attention network (MTTS-CAN) and enables real-time cardiovascular and respiratory measurements on mobile platforms. We evaluate our system on an Advanced RISC Machine (ARM) CPU and achieve state-of-the-art accuracy while running at over 150 frames per second which enables real-time applications. Systematic experimentation on large benchmark datasets reveals that our approach leads to substantial (20%-50%) reductions in error and generalizes well across datasets.

قيم البحث

اقرأ أيضاً

214 - Jiawei Shao , Yuyi Mao , Jun Zhang 2021
This paper investigates task-oriented communication for multi-device cooperative edge inference, where a group of distributed low-end edge devices transmit the extracted features of local samples to a powerful edge server for inference. While coopera tive edge inference can overcome the limited sensing capability of a single device, it substantially increases the communication overhead and may incur excessive latency. To enable low-latency cooperative inference, we propose a learning-based communication scheme that optimizes local feature extraction and distributed feature encoding in a task-oriented manner, i.e., to remove data redundancy and transmit information that is essential for the downstream inference task rather than reconstructing the data samples at the edge server. Specifically, we leverage an information bottleneck (IB) principle to extract the task-relevant feature at each edge device and adopt a distributed information bottleneck (DIB) framework to formalize a single-letter characterization of the optimal rate-relevance tradeoff for distributed feature encoding. To admit flexible control of the communication overhead, we extend the DIB framework to a distributed deterministic information bottleneck (DDIB) objective that explicitly incorporates the representational costs of the encoded features. As the IB-based objectives are computationally prohibitive for high-dimensional data, we adopt variational approximations to make the optimization problems tractable. To compensate the potential performance loss due to the variational approximations, we also develop a selective retransmission (SR) mechanism to identify the redundancy in the encoded features of multiple edge devices to attain additional communication overhead reduction. Extensive experiments evidence that the proposed task-oriented communication scheme achieves a better rate-relevance tradeoff than baseline methods.
Recent behavioral and electroencephalograph (EEG) studies have defined ways that auditory spatial attention can be allocated over large regions of space. As with most experimental studies, behavior EEG was averaged over 10s of minutes because identif ying abstract feature spatial codes from raw EEG data is extremely challenging. The goal of this study is to design a deep learning model that can learn from raw EEG data and predict auditory spatial information on a trial-by-trial basis. We designed a convolutional neural networks (CNN) model to predict the attended location or other stimulus locations relative to the attended location. A multi-task model was also used to predict the attended and stimulus locations at the same time. Based on the visualization of our models, we investigated features of individual classification tasks and joint feature of the multi-task model. Our model achieved an average 72.4% in relative location prediction and 90.0% in attended location prediction individually. The multi-task model improved the performance of attended location prediction by 3%. Our results suggest a strong correlation between attended location and relative location.
Recent work for image captioning mainly followed an extract-then-generate paradigm, pre-extracting a sequence of object-based features and then formulating image captioning as a single sequence-to-sequence task. Although promising, we observed two pr oblems in generated captions: 1) content inconsistency where models would generate contradicting facts; 2) not informative enough where models would miss parts of important information. From a causal perspective, the reason is that models have captured spurious statistical correlations between visual features and certain expressions (e.g., visual features of long hair and woman). In this paper, we propose a dependent multi-task learning framework with the causal intervention (DMTCI). Firstly, we involve an intermediate task, bag-of-categories generation, before the final task, image captioning. The intermediate task would help the model better understand the visual features and thus alleviate the content inconsistency problem. Secondly, we apply Pearls do-calculus on the model, cutting off the link between the visual features and possible confounders and thus letting models focus on the causal visual features. Specifically, the high-frequency concept set is considered as the proxy confounders where the real confounders are inferred in the continuous space. Finally, we use a multi-agent reinforcement learning (MARL) strategy to enable end-to-end training and reduce the inter-task error accumulations. The extensive experiments show that our model outperforms the baseline models and achieves competitive performance with state-of-the-art models.
Quantitative assessment of cardiac left ventricle (LV) morphology is essential to assess cardiac function and improve the diagnosis of different cardiovascular diseases. In current clinical practice, LV quantification depends on the measurement of my ocardial shape indices, which is usually achieved by manual contouring of the endo- and epicardial. However, this process subjected to inter and intra-observer variability, and it is a time-consuming and tedious task. In this paper, we propose a spatio-temporal multi-task learning approach to obtain a complete set of measurements quantifying cardiac LV morphology, regional-wall thickness (RWT), and additionally detecting the cardiac phase cycle (systole and diastole) for a given 3D Cine-magnetic resonance (MR) image sequence. We first segment cardiac LVs using an encoder-decoder network and then introduce a multitask framework to regress 11 LV indices and classify the cardiac phase, as parallel tasks during model optimization. The proposed deep learning model is based on the 3D spatio-temporal convolutions, which extract spatial and temporal features from MR images. We demonstrate the efficacy of the proposed method using cine-MR sequences of 145 subjects and comparing the performance with other state-of-the-art quantification methods. The proposed method obtained high prediction accuracy, with an average mean absolute error (MAE) of 129 $mm^2$, 1.23 $mm$, 1.76 $mm$, Pearson correlation coefficient (PCC) of 96.4%, 87.2%, and 97.5% for LV and myocardium (Myo) cavity regions, 6 RWTs, 3 LV dimensions, and an error rate of 9.0% for phase classification. The experimental results highlight the robustness of the proposed method, despite varying degrees of cardiac morphology, image appearance, and low contrast in the cardiac MR sequences.
Heterogeneous presentation of a neurological disorder suggests potential differences in the underlying pathophysiological changes that occur in the brain. We propose to model heterogeneous patterns of functional network differences using a demographi c-guided attention (DGA) mechanism for recurrent neural network models for prediction from functional magnetic resonance imaging (fMRI) time-series data. The context computed from the DGA head is used to help focus on the appropriate functional networks based on individual demographic information. We demonstrate improved classification on 3 subsets of the ABIDE I dataset used in published studies that have previously produced state-of-the-art results, evaluating performance under a leave-one-site-out cross-validation framework for better generalizeability to new data. Finally, we provide examples of interpreting functional network differences based on individual demographic variables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا