ﻻ يوجد ملخص باللغة العربية
Recently discussed topological materials Weyl-semimetals (WSs) combine both: high electron mobility comparable with graphene and unique topological protection of Dirac points. We present novel results related to electromagnetic field propagation through WSs. It is predicted that transmission of the normally incident polarized electromagnetic wave (EMW) through the WS strongly depends on the orientation of polarization with respect to a gyration vector $mathbf{g}$. The latter is related to the vector-parameter $mathbf{b}$, which represents the separation between the Weyl nodes of opposite chirality in the first Brillouin zone. By changing the polarization of the incident EMW with respect to the gyration vector $mathbf{g}$ the system undergoes the transition from the isotropic dielectric to the medium with Kerr- or Faraday-like rotation of polarization and finally to the system with chiral selective electromagnetic field. It is shown that WSs can be applied as the polarization filters.
Weyl semimetals are crystals in which electron bands cross at isolated points in momentum space. Associated with each crossing point (or Weyl node) is an integer topological invariant known as the Berry monopole charge. The discovery of new classes o
Solids with topologically robust electronic states exhibit unusual electronic and optical transport properties that do not exist in other materials. A particularly interesting example is chiral charge pumping, the so-called chiral anomaly, in recentl
We report the experimental discovery of Adler-Bell-Jackiw chiral anomaly in a Weyl semimetal crystal.
Recently, Weyl semimetals have been experimentally discovered in both inversion-symmetry-breaking and time-reversal-symmetry-breaking crystals. The non-trivial topology in Weyl semimetals can manifest itself with exotic phenomena which have been exte
We report the electrical transport properties for Weyl semimetal TaAs in an intense magnetic field. Series of anomalies occur in the longitudinal magnetoresistance and Hall signals at ultra-low temperatures when the Weyl electrons are confined into t