ﻻ يوجد ملخص باللغة العربية
We investigate the effective Dirac equation, corrected by merging two scenarios that are expected to emerge towards the quantum gravity scale. Namely, the existence of a minimal length, implemented by the generalized uncertainty principle, and exotic spinors, associated with any non-trivial topology equipping the spacetime manifold. We show that the free fermionic dynamical equations, within the context of a minimal length, just allow for trivial solutions, a feature that is not shared by dynamical equations for exotic spinors. In fact, in this coalescing setup, the exoticity is shown to prevent the Dirac operator to be injective, allowing the existence of non-trivial solutions.
We solve the generalized relativistic harmonic oscillator in 1+1 dimensions in the presence of a minimal length. Using the momentum space representation, we explore all the possible signs of the potentials and discuss their bound-state solutions for
We continue the construction of a Lagrangian description of irreducible half-integer higher-spin representations of the Poincare group with an arbitrary Young tableaux having $k$ rows, on a basis of the BRST--BFV approach suggested for bosonic fields
The details of unconstrained Lagrangian formulations (being continuation of earlier developed research for Bose particles in NPB 862 (2012) 270, [arXiv:1110.5044[hep-th]], Phys. of Part. and Nucl. 43 (2012) 689, [arXiv:1202.4710 [hep-th]]) are review
Exotic spinor fields arise from inequivalent spin structures on non-trivial topological manifolds, $M$. This induces an additional term in the Dirac operator, defined by the cohomology group $H^1(M,mathbb{Z}_2)$ that rules a Cech cohomology class. Th
Extending our previous construction in the sine-Gordon model, we show how to introduce two kinds of fermionic screening operators, in close analogy with conformal field theory with c<1.