ترغب بنشر مسار تعليمي؟ اضغط هنا

The VMC survey -- XXXVIII. Proper motion of the Magellanic Bridge

158   0   0.0 ( 0 )
 نشر من قبل Thomas Schmidt
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Magellanic Clouds are a nearby pair of interacting dwarf galaxies and satellites of the Milky Way. Studying their kinematic properties is essential to understanding their origin and dynamical evolution. They have prominent tidal features and the kinematics of these features can give hints about the formation of tidal dwarfs, galaxy merging and the stripping of gas. In addition they are an example of dwarf galaxies that are in the process of merging with a massive galaxy. The goal of this study is to investigate the kinematics of the Magellanic Bridge, a tidal feature connecting the Magellanic Clouds, using stellar proper motions to understand their most recent interaction. We calculated proper motions based on multi-epoch $K_{s}$-band aperture photometry, which were obtained with the Visible and Infrared Survey Telescope for Astronomy (VISTA), spanning a time of 1-3 yr, and we compared them with $Gaia$ Data Release 2 (DR2) proper motions. We tested two methods for removing Milky Way foreground stars using $Gaia$~DR2 parallaxes in combination with VISTA photometry or using distances based on Bayesian inference. We obtained proper motions for a total of 576,411 unique sources over an area of $23$ deg$^{2}$ covering the Magellanic Bridge including mainly Milky Way foreground stars, background galaxies, and a small population of possible Magellanic Bridge stars ($<$15,000). The first proper motion measurement of the Magellanic Bridge centre is $1.80pm0.25$ mas yr$^{-1}$ in right ascension and $-0.72pm0.13$ mas yr$^{-1}$ in declination. The proper motion measurements confirm a flow motion from the Small to the Large Magellanic Cloud. This flow can now be measured all across the entire length of the Magellanic Bridge. Our measurements indicate that the Magellanic Bridge is stretching.

قيم البحث

اقرأ أيضاً

We used data from the near-infrared VISTA survey of the Magellanic Cloud system (VMC) to measure proper motions (PMs) of stars within the Small Magellanic Cloud (SMC). The data analysed in this study comprise 26 VMC tiles, covering a total contiguous area on the sky of ~40 deg$^2$. Using multi-epoch observations in the Ks band over time baselines between 13 and 38 months, we calculated absolute PMs with respect to ~130,000 background galaxies. We selected a sample of ~2,160,000 likely SMC member stars to model the centre-of-mass motion of the galaxy. The results found for three different choices of the SMC centre are in good agreement with recent space-based measurements. Using the systemic motion of the SMC, we constructed spatially resolved residual PM maps and analysed for the first time the internal kinematics of the intermediate-age/old and young stellar populations separately. We found outward motions that point either towards a stretching of the galaxy or stripping of its outer regions. Stellar motions towards the North might be related to the Counter Bridge behind the SMC. The young populations show larger PMs in the region of the SMC Wing, towards the young Magellanic Bridge. In the older populations, we further detected a coordinated motion of stars away from the SMC in the direction of the Old Bridge as well as a stream towards the SMC.
We present the first spatially resolved map of stellar proper motions within the central ($sim$3.1 $times$ 2.4 kpc) regions of the Small Magellanic Cloud (SMC). The data used for this study encompasses four tiles from the ongoing near-infrared VISTA survey of the Magellanic Clouds system and covers a total contiguous area on the sky of $sim$6.81 deg$^2$. Proper motions have been calculated independently in two dimensions from the spatial offsets in the $K_s$ filter over time baselines between 22 and 27 months. The reflex motions of $sim$33~000 background galaxies are used to calibrate the stellar motions to an absolute scale. The resulting catalog is composed of more than 690 000 stars which have been selected based on their position in the $(J-K_s, K_s)$ color-magnitude diagram. For the median absolute proper motion of the SMC, we find ($mu_{alpha}mathrm{cos}(delta)$, $mu_{delta}$) = (1.087 $pm$ 0.192 (sys.) $pm$ 0.003 (stat.), $-$1.187 $pm$ 0.008 (sys.) $pm$ 0.003 (stat.)) mas yr$^{-1}$, consistent with previous studies. Mapping the proper motions as a function of position within the SMC reveals a non uniform velocity pattern indicative of a tidal feature behind the main body of the SMC and a flow of stars in the South-East moving predominantly along the line-of-sight.
We present the first detailed kinematic analysis of the proper motions (PMs) of stars in the Magellanic Bridge, from both the textit{Gaia} Data Release 2 catalog and from textit{Hubble Space Telescope} Advanced Camera for Surveys data. For the textit {Gaia} data, we identify and select two populations of stars in the Bridge region, young main sequence (MS) and red giant stars. The spatial locations of the stars are compared against the known H {small I} gas structure, finding a correlation between the MS stars and the H {small I} gas. In the textit{Hubble Space Telescope} fields our signal comes mainly from an older MS and turn-off population, and the proper motion baselines range between $sim 4$ and 13 years. The PMs of these different populations are found to be consistent with each other, as well as across the two telescopes. When the absolute motion of the Small Magellanic Cloud is subtracted out, the residual Bridge motions display a general pattern of pointing away from the Small Magellanic Cloud towards the Large Magellanic Cloud. We compare in detail the kinematics of the stellar samples against numerical simulations of the interactions between the Small and Large Magellanic Clouds, and find general agreement between the kinematics of the observed populations and a simulation in which the Clouds have undergone a recent direct collision.
We present $it{Hubble}$ $it{Space}$ $it{Telescope}$ proper motions in the direction of the star cluster NGC$,$419 in the Small Magellanic Cloud. Because of the high precision of our measurements, for the first time it is possible to resolve the compl ex kinematics of the stellar populations located in the field, even along the tangential direction. In fact, the proper motions we measured allow us to separate cluster stars, which move on average with ($mu_{alpha}cosdelta^{rm NGC,419}, mu_{delta}^{rm NGC,419}$) = ($+0.878pm0.055$, $-1.246pm0.048$) mas yr$^{-1}$, from those of the Small Magellanic Cloud and those belonging to a third kinematic feature that we recognise as part of the Magellanic Bridge. Resolving such a kinematic complexity enables the construction of decontaminated colour-magnitude diagrams, as well as the measurement of the absolute proper motion of the three separate components. Our study therefore sets the first steps towards the possibility of dynamically investigating the Magellanic system by exploiting the resolved kinematics of its stellar clusters.
We use multi-epoch near-infrared observations from the VISTA survey of the Magellanic Cloud system (VMC) to measure the proper motion of stars of the LMC, in one tile of 1.5 deg^2 centred at (alpha, delta) = (05:59:23.136, -66:20:28.68) and including the South Ecliptic Pole, with respect to their 2MASS position over a time baseline of ~10 years and from VMC observations only, spanning a time range of ~1 year. Stars of different ages are selected from the (J-Ks) vs. Ks diagram and their average coordinate displacement is computed from the difference between Ks band observations for stars as faint as Ks=19 mag. Proper motions are derived by averaging up to seven 2MASS-VMC combinations in the first case and from the slope of the best fit line among the seven VMC epochs in the second case. Separate proper motion values are obtained for variable stars in the field. The proper motion of ~40,000 LMC stars in the tile, with respect to ~8000 background galaxies, obtained from VMC data alone, is mu_alpha cos(delta) = +2.20+/-0.06 (stat) +/-0.29 (sys) and mu_delta = +1.70+/-0.06 (stat) +/-0.30 (sys) mas/yr. This value agrees with recent ground-based determinations in a nearby field but is larger than studies with the HST; the cause of this discrepancy may be due to additional systematic errors in the data. The LMC proper motion is also clearly distinct from the proper motion derived for stars of the Milky Way. The relative proper motion between the foreground stars and the LMC stars is ~5 mas/yr. Furthermore, we measure a decrease of the proper motion with increasing logarithm of stellar age for LMC stars. This study, based on just one VMC tile, shows the potential of the 2MASS-VMC and VMC-VMC combinations for a comprehensive investigation of the proper motion across the Magellanic system. (Abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا