ﻻ يوجد ملخص باللغة العربية
We detail the sensitivity of the liquid xenon (LXe) DARWIN observatory to solar neutrinos via elastic electron scattering. We find that DARWIN will have the potential to measure the fluxes of five solar neutrino components: $pp$, $^7$Be, $^{13}$N, $^{15}$O and $pep$. The precision of the $^{13}$N, $^{15}$O and $pep$ components is hindered by the double-beta decay of $^{136}$Xe and, thus, would benefit from a depleted target. A high-statistics observation of $pp$ neutrinos would allow us to infer the values of the weak mixing angle, $sin^2theta_w$, and the electron-type neutrino survival probability, $P_e$, in the electron recoil energy region from a few keV up to 200 keV for the first time, with relative precision of 5% and 4%, respectively, at an exposure of 300 ty. An observation of $pp$ and $^7$Be neutrinos would constrain the neutrino-inferred solar luminosity down to 0.2%. A combination of all flux measurements would distinguish between the high (GS98) and low metallicity (AGS09) solar models with 2.1-2.5$sigma$ significance, independent of external measurements from other experiments or a measurement of $^8$B neutrinos through coherent elastic neutrino-nucleus scattering in DARWIN. Finally, we demonstrate that with a depleted target DARWIN may be sensitive to the neutrino capture process of $^{131}$Xe.
A first measurement of neutrinos from the CNO fusion cycle in the Sun would allow a resolution to the current solar metallicity problem. Detection of these low-energy neutrinos requires a low-threshold detector, while discrimination from radioactive
This article details the potential for using Charge Coupled Devices (CCD) to detect low-energy neutrinos through their coherent scattering with nuclei. The detection of neutrinos through this standard model process has not been accessible because of
The DARWIN observatory is a proposed next-generation experiment to search for particle dark matter and for the neutrinoless double beta decay of $^{136}$Xe. Out of its 50$,$t total natural xenon inventory, 40$,$t will be the active target of a time p
Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based $ u_mu$ beam can improve the knowledge of the absolute neutrino
It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplic