ترغب بنشر مسار تعليمي؟ اضغط هنا

The Solar Corona during the Total Eclipse on 16 June 1806: Graphical Evidence of the Coronal Structure during the Dalton Minimum

128   0   0.0 ( 0 )
 نشر من قبل Hisashi Hayakawa
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Visible coronal structure, in particular the spatial evolution of coronal streamers, provides indirect information about solar magnetic activity and the underlying solar dynamo. Their apparent absence of structure observed during the total eclipses of throughout the Maunder Minimum has been interpreted as evidence of a significant change in the solar magnetic field from that during modern cycles. Eclipse observations available from the more recent Dalton Minimum may be able to provide further information, sunspot activity being between the levels seen during recent cycles and in the Maunder Minimum. Here, we show and examine two graphical records of the total solar eclipse on 1806 June 16, during the Dalton Minimum. These records show significant rays and streamers around an inner ring. The ring is estimated to be ~ 0.44 R_S in width and the streamers in excess of 11.88 R_S in length. In combination with records of spicules or prominences, these eclipse records visually contrast the Dalton Minimum with the Maunder Minimum in terms of their coronal structure and support the existing discussions based on the sunspot observations. These eclipse records are broadly consistent with the solar cycle phase in the modelled open solar flux and the reconstructed slow solar wind at most latitudes.



قيم البحث

اقرأ أيضاً

In addition to regular Schwabe cycles (~ 11 years), solar activity also shows longer periods of enhanced or reduced activity. Of these, reconstructions of the Dalton Minimum provide controversial sunspot group numbers and limited sunspot positions, p artially due to limited source record accessibility. We analysed Stephan Prantners sunspot observations from 1804--1844, the values of which had only been known through estimates despite their notable chronological coverage during the Dalton Minimum. We identified his original manuscript in Stiftsarchiv Wilten, near Innsbruck, Austria. We reviewed his biography (1782--1873) and located his observational sites at Wilten and Waidring, which housed the principal telescopes for his early and late observations: a 3.5-inch astronomical telescope and a Reichenbach 4-feet achromatic erecting telescope, respectively. We identified 215 days of datable sunspot observations, which are twice as much data as his estimated data in the existing database (= 115 days). Prantner counted up to 7--9 sunspot groups per day and measured sunspot positions, which show their distributions in both solar hemispheres. These results strikingly emphasise the difference between the Dalton Minimum and the Maunder Minimum as well as the similarity between the Dalton Minimum and the modern solar cycles.
80 - Yajie Chen , Hui Tian , Yingna Su 2018
We present an investigation of a coronal cavity observed above the western limb in the coronal red line Fe X 6374 {AA} using a telescope of Peking University and in the green line Fe XIV 5303 {AA} using a telescope of Yunnan Observatories, Chinese Ac ademy of Sciences during the total solar eclipse on 2017 August 21. A series of magnetic field models are constructed based on the magnetograms taken by the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory (SDO) one week before the eclipse. The model field lines are then compared with coronal structures seen in images taken by the Atmospheric Imaging Assembly on board SDO and in our coronal red line images. The best-fit model consists of a flux rope with a twist angle of 3.1$pi$, which is consistent with the most probable value of the total twist angle of interplanetary flux ropes observed at 1 AU. Linear polarization of the Fe XIII 10747 {AA} line calculated from this model shows a lagomorphic signature that is also observed by the Coronal Multichannel Polarimeter of the High Altitude Observatory. We also find a ring-shaped structure in the line-of-sight velocity of Fe XIII 10747 {AA}, which implies hot plasma flows along a helical magnetic field structure, in the cavity. These results suggest that the magnetic structure of the cavity is a highly twisted flux rope, which may erupt eventually. The temperature structure of the cavity has also been investigated using the intensity ratio of Fe XIII 10747 {AA} and Fe X 6374 {AA}.
The solar corona is a highly-structured plasma which can reach temperatures of more than ~2 MK. At low frequencies (decimetric and metric wavelengths), scattering and refraction of electromagnetic waves are thought to considerably increase the imaged radio source sizes (up to a few arcminutes). However, exactly how source size relates to scattering due to turbulence is still subject to investigation. The theoretical predictions relating source broadening to propagation effects have not been fully confirmed by observations due to the rarity of high spatial resolution observations of the solar corona at low frequencies. Here, the LOw Frequency ARray (LOFAR) was used to observe the solar corona at 120-180 MHz using baselines of up to ~3.5 km (corresponding to a resolution of ~1-2) during the partial solar eclipse of 2015 March 20. A lunar de-occultation technique was used to achieve higher spatial resolution (~0.6) than that attainable via standard interferometric imaging (~2.4). This provides a means of studying the contribution of scattering to apparent source size broadening. It was found that the de-occultation technique reveals a more structured quiet corona that is not resolved from standard imaging, implying scattering may be overestimated in this region when using standard imaging techniques. However, an active region source was measured to be ~4 using both de-occultation and standard imaging. This may be explained by the increased scattering of radio waves by turbulent density fluctuations in active regions, which is more severe than in the quiet Sun.
In order to study the solar corona during eclipses, a new telescope was constructed. Three coronal images were obtained simultaneously from one objective of the telescope as the coronal radiation passed through three polarisers (whose transmission di rections were turned through 0^{circ}, 60^{circ}, and 120^{circ} to the chosen direction); one image without polariser was also obtained. The telescope was used to observe the solar corona during the eclipse of 1 August 2008. We obtained distributions of the polarisation brightness, K-corona brightness, degree of the K-corona polarisation and total polarisation degree; polarisation direction depending on the latitude and radius in the plane of the sky was also obtained. We calculated radial distributions of electron density, depending on the latitude. Properties of all these distributions in different coronal structures were compared. We determined temperature of coronal plasma in different coronal structures on the assumption that there is a hydrostatic equilibrium.
Seven different models are applied to the same problem of simulating the Suns coronal magnetic field during the solar eclipse on 2015 March 20. All of the models are non-potential, allowing for free magnetic energy, but the associated electric curren ts are developed in significantly different ways. This is not a direct comparison of the coronal modelling techniques, in that the different models also use different photospheric boundary conditions, reflecting the range of approaches currently used in the community. Despite the significant differences, the results show broad agreement in the overall magnetic topology. Among those models with significant volume currents in much of the corona, there is general agreement that the ratio of total to potential magnetic energy should be approximately 1.4. However, there are significant differences in the electric current distributions; while static extrapolations are best able to reproduce active regions, they are unable to recover sheared magnetic fields in filament channels using currently available vector magnetogram data. By contrast, time-evolving simulations can recover the filament channel fields at the expense of not matching the observed vector magnetic fields within active regions. We suggest that, at present, the best approach may be a hybrid model using static extrapolations but with additional energization informed by simplified evolution models. This is demonstrated by one of the models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا