ﻻ يوجد ملخص باللغة العربية
We compute a light front wave function for heavy vector mesons based on long distance matrix elements constrained by decay width analyses in the Non Relativistic QCD framework. Our approach provides a systematic expansion of the wave function in quark velocity. The first relativistic correction included in our calculation is found to be significant, and crucial for a good description of the HERA exclusive $mathrm{J}/psi$ production data. When looking at cross section ratios between nuclear and proton targets, the wave function dependence does not cancel out exactly. In particular the fully non-relativistic limit is found not to be a reliable approximation even in this ratio. The important role of the Melosh rotation to express the rest frame wave function on the light front is illustrated.
The structure of the pion wave function in the relativistic constituent quark model is investigated in the explicitly covariant formulation of light-front dynamics. We calculate the two relativistic components of the pion wave function in a simple on
We present results for higher-order corrections to exclusive $mathrm{J}/psi$ production. This includes the first relativistic correction of order $v^2$ in quark velocity, and next-to-leading order corrections in $alpha_s$ for longitudinally polarized
We study the twist-2 distribution amplitudes (DAs) and the decay constants of pseudoscalar light ($pi$, $K$) and heavy ($D$, $D_s$, $B$, $B_s$) mesons as well as the longitudinally and transversely polarized vector light ($rho$, $K^*$) and heavy ($D^
We investigate the parton distribution functions (PDFs) of the pion and kaon from the eigenstates of a light-front effective Hamiltonian in the constituent quark-antiquark representation suitable for low-momentum scale applications. By taking these s
The low-energy amplitude of Compton scattering on the bound state of two charged particles of arbitrary masses, charges and spins is calculated. A case in which the bound state exists due to electromagnetic interaction (QED) is considered. The term,