ﻻ يوجد ملخص باللغة العربية
A group $G$ is invariably generated (IG) if there is a subset $S subseteq G$ such that for every subset $S subseteq G$, obtained from $S$ by replacing each element with a conjugate, $S$ generates $G$. $G$ is finitely invariably generated (FIG) if, in addition, one can choose such a subset $S$ to be finite. In this note we construct a FIG group $G$ with an index $2$ subgroup $N lhd G$ such that $N$ is not IG. This shows that neither property IG nor FIG is stable under passing to subgroups of finite index, answering questions of Wiegold and Kantor, Lubotzky, Shalev. We also produce the first examples of finitely generated IG groups that are not FIG, answering a question of Cox.
It is observed that the conjugacy growth series of the infinite fini-tary symmetric group with respect to the generating set of transpositions is the generating series of the partition function. Other conjugacy growth series are computed, for other g
We generalize a result of R. Thomas to establish the non-vanishing of the first l2-Betti number for a class of finitely generated groups.
The twin group $T_n$ is a right angled Coxeter group generated by $n- 1$ involutions and having only far commutativity relations. These groups can be thought of as planar analogues of Artin braid groups. In this note, we study some properties of twin
Let $G$ be a finite group and let $pi(G)={p_1, p_2, ldots, p_k}$ be the set of prime divisors of $|G|$ for which $p_1<p_2<cdots<p_k$. The Gruenberg-Kegel graph of $G$, denoted ${rm GK}(G)$, is defined as follows: its vertex set is $pi(G)$ and two dif
The degree pattern of a finite group is the degree sequence of its prime graph in ascending order of vertices. We say that the problem of OD-characterization is solved for a finite group if we determine the number of pairwise nonisomorphic finite gro