ﻻ يوجد ملخص باللغة العربية
Single-view depth estimation using CNNs trained from unlabelled videos has shown significant promise. However, the excellent results have mostly been obtained in street-scene driving scenarios, and such methods often fail in other settings, particularly indoor videos taken by handheld devices, in which case the ego-motion is often degenerate, i.e., the rotation dominates the translation. In this work, we establish that the degenerate camera motions exhibited in handheld settings are a critical obstacle for unsupervised depth learning. A main contribution of our work is fundamental analysis which shows that the rotation behaves as noise during training, as opposed to the translation (baseline) which provides supervision signals. To capitalise on our findings, we propose a novel data pre-processing method for effective training, i.e., we search for image pairs with modest translation and remove their rotation via the proposed weak image rectification. With our pre-processing, existing unsupervised models can be trained well in challenging scenarios (e.g., NYUv2 dataset), and the results outperform the unsupervised SOTA by a large margin (0.147 vs. 0.189 in the AbsRel error).
We propose a monocular depth estimator SC-Depth, which requires only unlabelled videos for training and enables the scale-consistent prediction at inference time. Our contributions include: (i) we propose a geometry consistency loss, which penalizes
We present a novel algorithm for self-supervised monocular depth completion. Our approach is based on training a neural network that requires only sparse depth measurements and corresponding monocular video sequences without dense depth labels. Our s
Depth estimation, as a necessary clue to convert 2D images into the 3D space, has been applied in many machine vision areas. However, to achieve an entire surrounding 360-degree geometric sensing, traditional stereo matching algorithms for depth esti
In this paper, we tackle the problem of estimating the depth of a scene from a monocular video sequence. In particular, we handle challenging scenarios, such as non-translational camera motion and dynamic scenes, where traditional structure from moti
Recent work has shown that CNN-based depth and ego-motion estimators can be learned using unlabelled monocular videos. However, the performance is limited by unidentified moving objects that violate the underlying static scene assumption in geometric