ترغب بنشر مسار تعليمي؟ اضغط هنا

Charged particle guiding and beam splitting with auto-ponderomotive potentials on a chip

66   0   0.0 ( 0 )
 نشر من قبل Robert Zimmermann
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report guiding and manipulation of charged particle beams by means of electrostatic optics based on a principle similar to the electrodynamic Paul trap. We use hundreds of electrodes fabricated on planar substrates and supplied with static voltages to create a ponderomotive potential for charged particles in motion. Shape and strength of the potential can be locally tailored by the electrodes layout and the applied voltages, enabling the control of charged particle beams within precisely engineered effective potentials. We demonstrate guiding of electrons and ions for a large range of energies (from 20 to 5000 eV) and masses (5E-4 to 131 atomic mass units) as well as electron beam splitting as a proof-of-concept for more complex beam manipulation. Simultaneous confinement of charged particles with different masses is possible, as well as guiding of electrons with energies in the keV regime, and the creation of highly customizable potential landscapes, which is all hard to impossible with conventional electrodynamic Paul traps.

قيم البحث

اقرأ أيضاً

101 - Zhenhai Fu , Xuan She , Nan Li 2018
The rapid loading and manipulation of microspheres in optical trap is important for its applications in optomechanics and precision force sensing. We investigate the microsphere behavior under coaction of a dual-beam fiber-optic trap and a pulse lase r beam, which reveals a launched microsphere can be effectively captured in a spatial region. A suitable order of pulse duration for launch is derived according to the calculated detachment energy threshold of pulse laser. Furthermore, we illustrate the effect of structural parameters on the launching process, including the spot size of pulse laser, the vertical displacement of beam waist and the initial position of microsphere. Our result will be instructive in the optimal design of the pulse-laser-assisted optical tweezers for controllable loading mechanism of optical trap.
Single-photon counters are single-pixel binary devices that click upon the absorption of a photon but obscure its spectral information, whereas resolving the colour of detected photons has been in critical demand for frontier astronomical observation , spectroscopic imaging and wavelength division multiplexed quantum communications. Current implementations of single-photon spectrometers either consist of bulky wavelength-scanning components or have limited detection channels, preventing parallel detection of broadband single photons with high spectral resolutions. Here, we present the first broadband chip-scale single-photon spectrometer covering both visible and infrared wavebands spanning from 600nm to 2000nm. The spectrometer integrates an on-chip dispersive echelle grating with a single-element propagating superconducting nanowire detector of ultraslow-velocity for mapping the dispersed photons with high spatial resolutions. The demonstrated on-chip single-photon spectrometer features small device footprint, high robustness with no moving parts and meanwhile offers more than 200 equivalent wavelength detection channels with further scalability.
A peculiar radiation arising as a result of radiation interference of nonlinear oscillators excited by a monochromatic plane wave field of the incident particle is described. The radiation properties are determined by the fact that a phase of each os cillator radiation fields is synchronized by a wave field, while the radiation itself occurs due to the particle field influence on the oscillators. The consideration is performed for a thin film with negligible density effect. It is supposed that the contribution is given only by a long-wave part of the Weizsacker spectrum for which nonlinear polarization coefficients of medium are large.
Light detection and ranging (lidar) has long been used in various applications. Solid-state beam steering mechanisms are needed for robust lidar systems. Here we propose and demonstrate a lidar scheme called Swept Source Lidar that allows us to perfo rm frequency-modulated continuous-wave (FMCW) ranging and nonmechanical beam steering simultaneously. Wavelength dispersive elements provide angular beam steering, while a laser frequency is continuously swept by a wideband swept source over its whole tuning bandwidth. Employing a tunable vertical-cavity surface-emitting laser and a 1-axis mechanical beam scanner, three-dimensional point cloud data has been obtained. Swept Source Lidar systems can be flexibly combined with various beam steering elements to realize full solid-state FMCW lidar systems.
Charged Particle Monitor (CPM) on-board the AstroSat satellite is an instrument designed to detect the flux of charged particles at the satellite location. A Cesium Iodide Thallium (CsI(Tl)) crystal is used with a Kapton window to detect protons with energies greater than 1 MeV. The ground calibration of CPM was done using gamma-rays from radioactive sources and protons from particle accelerators. Based on the ground calibration results, energy deposition above 1 MeV are accepted and particle counts are recorded. It is found that CPM counts are steady and the signal for the onset and exit of South Atlantic Anomaly (SAA) region are generated in a very reliable and stable manner.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا