ترغب بنشر مسار تعليمي؟ اضغط هنا

H$alpha$ Luminosity of ATLAS18qtd Does Not Plateau in the Nebular Phase

53   0   0.0 ( 0 )
 نشر من قبل Michael Tucker
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new spectroscopic and photometric observations of ATLAS18qtd/SN 2018cqj, a fast-declining Type Ia supernova with variable H$alpha$ emission in previously-published nebular phase spectra. ATLAS18qtd is undetected in both spectroscopic and photometric observations which occurred at $sim 540~rm d$ after maximum light and $sim 230~rm d$ after the last H$alpha$ detection. With these new non-detections, we place an upper limit on the H$alpha$ luminosity of $lesssim 1.1times 10^{36}~rm{erg}~rm s^{-1}$ indicating the H$alpha$ flux decreased by a factor of $gtrsim 4$ since the previous detection. This upper limit excludes H$alpha$ emission that plateaus or increases since the previous detection but cannot confirm that the H$alpha$ emission decay rate is equivalent to the supernova decay rate.



قيم البحث

اقرأ أيضاً

We present optical photometry and spectroscopy of the Type Ia supernova SN2018cqj/ATLAS18qtd. The supernova exploded in an isolated region at $sim 65$~kpc from the S0 galaxy IC~550 at $z=0.0165$ ($Dapprox 74$~Mpc) and has a redshift consistent with a physical association to this galaxy. Multicolor photometry show that SN2018cqj/ATLAS18qtd is a low-luminosity ($M_{B_{max}}approx -17.9$ mag), fast-declining Type Ia with color stretch $s_{BV} approx 0.6$ and $B$-band decline rate $Delta m_{15}(B) approx 1.77$ mag. Two nebular-phase spectra obtained as part of the 100IAS survey at +193 and +307 days after peak show the clear detection of a narrow H$alpha$ line in emission that is resolved in the first spectrum with $rm FWHM approx 1200$ km s$^{-1}$ and $L_{Halpha} approx 3.8times 10^{37}$ erg s$^{-1}$. The detection of a resolved H$alpha$ line with a declining luminosity is broadly consistent with recent models where hydrogen is stripped from the non-degenerate companion in a single-degenerate progenitor system. However, the amount of hydrogen consistent with the luminosities of the H$alpha$ line would be $sim 10^{-3}$ M$_{odot}$, significantly less than theoretical model predictions in the classical single-degenerate progenitor systems. SN2018cqj/ATLAS18qtd is the second low-luminosity, fast-declining Type Ia SN after SN2018fhw/ASASSN-18tb that shows narrow H$alpha$ in emission in its nebular-phase spectra.
As part of the 100IAS survey, a program aimed to obtain nebular-phase spectra for a volume-limited and homogeneous sample of Type Ia supernovae (SNe Ia), we observed ASASSN-18tb (SN 2018fhw) at 139 days past maximum light. ASASSN-18tb was a fast-decl ining, sub-luminous event that fits well within the observed photometric and spectroscopic distributions of the SN Ia population. We detect a prominent H$alpha$ emission line of $L_{{rm H}alpha}=2.2pm0.2times10^{38}$ ergs s$^{-1}$ with FWHM $approx1100$ km s$^{-1}$ in the nebular-phase spectrum of this SN Ia. High luminosity H$alpha$ emission ($L_{{rm H}alpha}gtrsim 10^{40}$ ergs~s$^{-1}$) has previously been discovered in a rare class of SNe Ia-like objects showing CSM interactions (SNe Ia-CSM). They predominantly belong to over-luminous ($M_{rm max}<-19$ mag in optical) 1991T-like SNe Ia and are exclusively found in star-forming galaxies. By contrast, ASASSN-18tb is a sub-luminous SN Ia ($M_{B, {rm max}}sim -17.7$ mag) found in an early-type galaxy dominated by old stellar populations. We discuss possible origins for the observed hydrogen. Out of 75 SNe Ia for which we have so far obtained nebular spectra in 100IAS, no other SN shows a $sim 1000 ,{rm km s^{-1}}$ H$alpha$ emission line with comparable line luminosity as ASASSN-18tb, emphasizing the rarity of such emission in the nebular phase. Based on preliminary results from our survey, the rate for ASASSN-18tb-like nebular H$alpha$ emission could be as high as $sim 10%$ level among sub-luminous SNe Ia.
(Abridged) The detection of forming planets in disks around young stars remains elusive, and state-of-the-art observational techniques provide somewhat ambiguous results. It has been reported that the pre-transitional T Tauri star LkCa 15 could host three planets; candidate planet b is in the process of formation, as inferred from its H$alpha$ emission. However, a more recent work casts doubts on the planetary nature of the previous detections. We have observed LkCa 15 with ISIS/WHT. The spectrographs slit was oriented towards the last reported position of LkCa 15 b (parallel direction) and 90degr from that (perpendicular). The photocenter and full width half maximum (FWHM) of the Gaussians fitting the spatial distribution at H$alpha$ and the adjacent continuum were measured. A well-known binary (GU CMa) was used as a calibrator to test the spectro-astrometric performance of ISIS/WHT, recovering consistent photocenter and FWHM signals. However, the photocenter shift predicted for LkCa 15 b is not detected, but the FWHM in H$alpha$ is broader than in the continuum for both slit positions. Our simulations show that the photocenter and FWHM observations cannot be explained simultaneously by an accreting planet. In turn, both spectro-astrometric observations are naturally reproduced from a roughly symmetric Halpha emitting region centered on the star and extent comparable to the orbit originally attributed to the planet at several au. The extended H$alpha$ emission around LkCa 15 could be related to a variable disk wind, but additional multi-epoch data and detailed modeling are necessary to understand its physical nature. Spectro-astrometry in H$alpha$ is able to test the presence of accreting planets and can be used as a complementary technique to survey planet formation in circumstellar disks.
We present an analysis of 123 Gamma-ray bursts (GRBs) with known redshifts possessing an afterglow plateau phase. We reveal that $L_a-T^{*}_a$ correlation between the X-ray luminosity $L_a$ at the end of the plateau phase and the plateau duration, $T ^*_a$, in the GRB rest frame has a power law slope different, within more than 2 $sigma$, from the slope of the prompt $L_{f}-T^{*}_{f}$ correlation between the isotropic pulse peak luminosity, $L_{f}$, and the pulse duration, $T^{*}_{f}$, from the time since the GRB ejection. Analogously, we show differences between the prompt and plateau phases in the energy-duration distributions with the afterglow emitted energy being on average $10%$ of the prompt emission. Moreover, the distribution of prompt pulse versus afterglow spectral indexes do not show any correlation. In the further analysis we demonstrate that the $L_{peak}-L_a$ distribution, where $L_{peak}$ is the peak luminosity from the start of the burst, is characterized with a considerably higher Spearman correlation coefficient, $rho=0.79$, than the one involving the averaged prompt luminosity, $L_{prompt}-L_a$, for the same GRB sample, yielding $rho=0.60$. Since some of this correlation could result from the redshift dependences of the luminosities, namely from their cosmological evolution we use the Efron-Petrosian method to reveal the intrinsic nature of this correlation. We find that a substantial part of the correlation is intrinsic. We apply a partial correlation coefficient to the new de-evolved luminosities showing that the intrinsic correlation exists.
We present late-time spectra of eight Type Ia supernovae (SNe Ia) obtained at $>200$ days after peak brightness using the Gemini South and Keck telescopes. All of the SNe Ia in our sample were nearby, well separated from their host galaxys light, and have early-time photometry and spectroscopy from the Las Cumbres Observatory (LCO). Parameters are derived from the light curves and spectra such as peak brightness, decline rate, photospheric velocity, and the widths and velocities of the forbidden nebular emission lines. We discuss the physical interpretations of these parameters for the individual SNe Ia and the sample in general, including comparisons to well-observed SNe Ia from the literature. There are possible correlations between early-time and late-time spectral features that may indicate an asymmetric explosion, so we discuss our sample of SNe within the context of models for an offset ignition and/or white dwarf collisions. A subset of our late-time spectra are uncontaminated by host emission, and we statistically evaluate our nondetections of H$alpha$ emission to limit the amount of hydrogen in these systems. Finally, we consider the late-time evolution of the iron emission lines, finding that not all of our SNe follow the established trend of a redward migration at $>200$ days after maximum brightness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا