ترغب بنشر مسار تعليمي؟ اضغط هنا

Sampling-Based Motion Planning on Sequenced Manifolds

142   0   0.0 ( 0 )
 نشر من قبل Peter Englert
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We address the problem of planning robot motions in constrained configuration spaces where the constraints change throughout the motion. The problem is formulated as a fixed sequence of intersecting manifolds, which the robot needs to traverse in order to solve the task. We specify a class of sequential motion planning problems that fulfill a particular property of the change in the free configuration space when transitioning between manifolds. For this problem class, we develop the algorithm Planning on Sequenced Manifolds (PSM*) which searches for optimal intersection points between manifolds by using RRT* in an inner loop with a novel steering strategy. We provide a theoretical analysis regarding PSM*s probabilistic completeness and asymptotic optimality. Further, we evaluate its planning performance on multi-robot object transportation tasks. Video: https://youtu.be/Q8kbILTRxfU Code: https://github.com/etpr/sequential-manifold-planning



قيم البحث

اقرأ أيضاً

Constrained robot motion planning is a widely used technique to solve complex robot tasks. We consider the problem of learning representations of constraints from demonstrations with a deep neural network, which we call Equality Constraint Manifold N eural Network (ECoMaNN). The key idea is to learn a level-set function of the constraint suitable for integration into a constrained sampling-based motion planner. Learning proceeds by aligning subspaces in the network with subspaces of the data. We combine both learned constraints and analytically described constraints into the planner and use a projection-based strategy to find valid points. We evaluate ECoMaNN on its representation capabilities of constraint manifolds, the impact of its individual loss terms, and the motions produced when incorporated into a planner.
Motion planning with constraints is an important part of many real-world robotic systems. In this work, we study manifold learning methods to learn such constraints from data. We explore two methods for learning implicit constraint manifolds from dat a: Variational Autoencoders (VAE), and a new method, Equality Constraint Manifold Neural Network (ECoMaNN). With the aim of incorporating learned constraints into a sampling-based motion planning framework, we evaluate the approaches on their ability to learn representations of constraints from various datasets and on the quality of paths produced during planning.
This paper studies the problem of control strategy synthesis for dynamical systems with differential constraints to fulfill a given reachability goal while satisfying a set of safety rules. Particular attention is devoted to goals that become feasibl e only if a subset of the safety rules are violated. The proposed algorithm computes a control law, that minimizes the level of unsafety while the desired goal is guaranteed to be reached. This problem is motivated by an autonomous car navigating an urban environment while following rules of the road such as always travel in right lane and do not change lanes frequently. Ideas behind sampling based motion-planning algorithms, such as Probabilistic Road Maps (PRMs) and Rapidly-exploring Random Trees (RRTs), are employed to incrementally construct a finite concretization of the dynamics as a durational Kripke structure. In conjunction with this, a weighted finite automaton that captures the safety rules is used in order to find an optimal trajectory that minimizes the violation of safety rules. We prove that the proposed algorithm guarantees asymptotic optimality, i.e., almost-sure convergence to optimal solutions. We present results of simulation experiments and an implementation on an autonomous urban mobility-on-demand system.
In this paper, we introduce a new probabilistically safe local steering primitive for sampling-based motion planning in complex high-dimensional configuration spaces. Our local steering procedure is based on a new notion of a convex probabilistically safe corridor that is constructed around a configuration using tangent hyperplanes of confidence ellipsoids of Gaussian mixture models learned from prior collision history. Accordingly, we propose to expand a random motion planning graph towards a sample goal using its projection onto probabilistically safe corridors, which efficiently exploits the local geometry of configuration spaces for selecting proper steering direction and adapting steering stepsize. We observe that the proposed local steering procedure generates effective steering motion around difficult regions of configuration spaces, such as narrow passages, while minimizing collision likelihood. We evaluate the proposed steering method with randomized motion planners in a number of planning scenarios, both in simulation and on a physical 7DoF robot arm, demonstrating the effectiveness of our safety guided local planner over the standard straight-line planner.
Sampling-based motion planners rely on incremental densification to discover progressively shorter paths. After computing feasible path $xi$ between start $x_s$ and goal $x_t$, the Informed Set (IS) prunes the configuration space $mathcal{C}$ by cons ervatively eliminating points that cannot yield shorter paths. Densification via sampling from this Informed Set retains asymptotic optimality of sampling from the entire configuration space. For path length $c(xi)$ and Euclidean heuristic $h$, $IS = { x | x in mathcal{C}, h(x_s, x) + h(x, x_t) leq c(xi) }$. Relying on the heuristic can render the IS especially conservative in high dimensions or complex environments. Furthermore, the IS only shrinks when shorter paths are discovered. Thus, the computational effort from each iteration of densification and planning is wasted if it fails to yield a shorter path, despite improving the cost-to-come for vertices in the search tree. Our key insight is that even in such a failure, shorter paths to vertices in the search tree (rather than just the goal) can immediately improve the planners sampling strategy. Guided Incremental Local Densification (GuILD) leverages this information to sample from Local Subsets of the IS. We show that GuILD significantly outperforms uniform sampling of the Informed Set in simulated $mathbb{R}^2$, $SE(2)$ environments and manipulation tasks in $mathbb{R}^7$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا