ﻻ يوجد ملخص باللغة العربية
The Extreme Energy Events (EEE) experiment, dedicated to the study of secondary cosmic rays, is arguably the largest detector system in the world implemented by Multigap Resistive Plate Chambers. The EEE network consists of 60 telescopes distributed over all the Italian territory; each telescope is made of three MRPCs and allows to reconstruct the trajectory of cosmic muons with high efficiency and optimal angular resolution. A distinctive feature of the EEE network is that almost all telescopes are housed in High Schools and managed by groups of students and teachers, who previously took care of their construction at CERN. This peculiarity is a big plus for the experiment, which combines the scientific relevance of its objectives with effective outreach activities. The unconventional location of the detectors, mainly in standard classrooms of school buildings, with heterogeneous maintenance conditions and without controlled temperature and dedicated power lines, is a unique test field to verify the robustness, the low aging characteristics and the long-lasting performance of MRPC technology for particle monitoring and timing. Finally, it is reported how the spatial resolution, efficiency, tracking capability and stability of these chambers behave in time.
The muon telescopes of the Extreme Energy Events (EEE) Project are made of three Multigap Resistive Plate Chambers (MRPC). The EEE array is composed, so far, of 59 telescopes and is organized in clusters and single telescope stations distributed all
The CMS experiment, located at the CERN Large Hadron Collider, has a redundant muon system composed by three different detector technologies: Cathode Strip Chambers (in the forward regions), Drift Tubes (in the central region) and Resistive Plate Cha
The Resistive Plate Chamber (RPC) muon subsystem contributes significantly to the formation of the trigger decision and reconstruction of the muon trajectory parameters. Simulation of the RPC response is a crucial part of the entire CMS Monte Carlo s
This paper reports on detailed measurements of the performance of Resistive Plate Chambers in a proton beam with variable intensity. Short term effects, such as dead time, are studied using consecutive events. On larger time scales, for various beam
The DHCAL, the Digital Hadron Calorimeter, is a prototype calorimeter based on Resistive Plate Chambers (RPCs). The design emphasizes the imaging capabilities of the detector in an effort to optimize the calorimeter for the application of Particle Fl