ترغب بنشر مسار تعليمي؟ اضغط هنا

JINGLE -- IV. Dust, HI gas and metal scaling laws in the local Universe

62   0   0.0 ( 0 )
 نشر من قبل Ilse De Looze
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Scaling laws of dust, HI gas and metal mass with stellar mass, specific star formation rate and metallicity are crucial to our understanding of the buildup of galaxies through their enrichment with metals and dust. In this work, we analyse how the dust and metal content varies with specific gas mass ($M_{text{HI}}$/$M_{star}$) across a diverse sample of 423 nearby galaxies. The observed trends are interpreted with a set of Dust and Element evolUtion modelS (DEUS) - incluidng stellar dust production, grain growth, and dust destruction - within a Bayesian framework to enable a rigorous search of the multi-dimensional parameter space. We find that these scaling laws for galaxies with $-1.0lesssim log M_{text{HI}}$/$M_{star}lesssim0$ can be reproduced using closed-box models with high fractions (37-89$%$) of supernova dust surviving a reverse shock, relatively low grain growth efficiencies ($epsilon$=30-40), and long dus lifetimes (1-2,Gyr). The models have present-day dust masses with similar contributions from stellar sources (50-80,$%$) and grain growth (20-50,$%$). Over the entire lifetime of these galaxies, the contribution from stardust ($>$90,$%$) outweighs the fraction of dust grown in the interstellar medium ($<$10$%$). Our results provide an alternative for the chemical evolution models that require extremely low supernova dust production efficiencies and short grain growth timescales to reproduce local scaling laws, and could help solving the conundrum on whether or not grains can grow efficiently in the interstellar medium.



قيم البحث

اقرأ أيضاً

The chemical enrichment in the interstellar medium (ISM) of galaxies is regulated by several physical processes: stellar evolution, grain formation and destruction, galactic inflows and outflows. Understanding such processes is essential to follow th e chemical enrichment of galaxies through the cosmic epochs, and to interpret the observations. Despite the importance of such topics, the efficiency of the different processes driving the evolution of baryons in galaxies, remain controversial. We revise the current description of metal and dust evolution in local low-metallicity dwarf galaxies and we develop a description for Lyman Break Galaxies. Our main goal is to reproduce i) the peak in the mass of dust over the mass of stars (sMdust) observed within few hundred Myrs; ii) the decrease of the sMdust at later time. The spectral energy distribution of the galaxies is fitted with the Code Investigating GALaxies Emission (CIGALE), through which the stellar and dust masses, and the star formation rate are estimated. For some of the dwarf galaxies, the metal and gas content are also available. We run different calculations of chemical evolution in galaxies, and we fit the observed properties through the model predictions. We show that i) a top-heavy initial mass function that favours massive stars and a dust condensation fraction for Type II Supernovae (SNe II) of 50% or more help to reproduce the peak of sMdust observed after 100 Myrs since the beginning of the cycle; ii) galactic outflows play a crucial role in reproducing the decline in sMdust with age, and they are more efficient than grain destruction from SNe II; iii) a star formation efficiency (mass of gas converted into stars) of few per cent is required to explain the metallicity of local dwarf galaxies; iv) dust growth in the ISM is not necessary to reproduce the sMdust and, if present, its effect is erased by galactic outflows.
We present the extended GALEX Arecibo SDSS Survey (xGASS), a gas fraction-limited census of the atomic (HI) gas content of 1179 galaxies selected only by stellar mass ($M_star =10^{9}-10^{11.5} M_odot$) and redshift ($0.01<z<0.05$). This includes new Arecibo observations of 208 galaxies, for which we release catalogs and HI spectra. In addition to extending the GASS HI scaling relations by one decade in stellar mass, we quantify total (atomic+molecular) cold gas fractions and molecular-to-atomic gas mass ratios, $R_{mol}$, for the subset of 477 galaxies observed with the IRAM 30 m telescope. We find that atomic gas fractions keep increasing with decreasing stellar mass, with no sign of a plateau down to $log M_star/M_odot = 9$. Total gas reservoirs remain HI-dominated across our full stellar mass range, hence total gas fraction scaling relations closely resemble atomic ones, but with a scatter that strongly correlates with $R_{mol}$, especially at fixed specific star formation rate. On average, $R_{mol}$ weakly increases with stellar mass and stellar surface density $mu_star$, but individual values vary by almost two orders of magnitude at fixed $M_star$ or $mu_star$. We show that, for galaxies on the star-forming sequence, variations of $R_{mol}$ are mostly driven by changes of the HI reservoirs, with a clear dependence on $mu_star$. Establishing if galaxy mass or structure plays the most important role in regulating the cold gas content of galaxies requires an accurate separation of bulge and disk components for the study of gas scaling relations.
119 - S. Viaene , J. Fritz , M. Baes 2014
The imprints of dust-starlight interactions are visible in scaling relations between stellar characteristics, star formation parameters and dust properties. We aim to examine dust scaling relations on a sub-kpc resolution in the Andromeda galaxy (M31 ) by comparing the properties on a local and global scale to other galaxies of the local universe. New Herschel observations are combined with available data from GALEX, SDSS, WISE and Spitzer to construct a dataset covering UV to submm wavelengths. We work at the resolution of the SPIRE $500; mu$m beam, with pixels corresponding to physical regions of 137 x 608 pc in the galaxys disk. A panchromatic spectral energy distribution was modelled for each pixel and several dust scaling relations are investigated. We find, on a sub-kpc scale, strong correlations between $M_d/M_star$ and NUV-r, and between $M_d/M_star$ and $mu_star$ (the stellar mass surface density). Striking similarities with corresponding relations based on integrated galaxies are found. We decompose M31 in four macro-regions based on their FIR morphology; the bulge, inner disk, star forming ring and the outer disk. All regions closely follow the galaxy-scale average trends. The specific star formation characteristics we derive for these macro-regions give strong hints of an inside-out formation of the bulge-disk geometry, as well as an internal downsizing process. However, within each macro-region, a great diversity in individual micro-regions is found. Furthermore, we confirm that dust in the bulge of M31 is heated only by the old stellar populations. In general, the local dust scaling relations indicate that the dust content in M31 is maintained by a subtle interplay of past and present star formation. The similarity with galaxy-based relations strongly suggests that they are in situ correlations, with underlying processes that must be local in nature. (Abriged)
136 - Ying Zu 2018
The neutral hydrogen~(HI) gas is an important barometer of recent star formation and metal enrichment activities in galaxies. I develop a novel statistical method for predicting the HI-to-stellar mass ratio $f_{gas}$ of galaxies from their stellar ma ss and optical colour, and apply it to a volume-limited galaxy sample jointly observed by the Sloan Digital Sky Survey and the Arecibo Legacy Fast ALFA survey. I eliminate the impact of the Malmquist bias against HI-deficient systems on the $f_{gas}$ predictor by properly accounting for the HI detection probability of each galaxy in the analysis. The best-fitting $f_{gas}$ predictor, with an estimated scatter of $0.272$ dex, provides excellent description to the observed HI mass function. After defining an HI excess parameter as the deviation of the observed $f_{gas}$ from the expected value, I confirm that there exists a strong secondary dependence of the mass-metallicity relation on HI excess. By further examining the 2D metallicity distribution on the specific star formation rate vs. HI excess plane, I show that the metallicity dependence on HI is likely more fundamental than that on specific star formation rate. In addition, I find that the environmental dependence of HI in the local Universe can be effectively described by the cross-correlation coefficient between HI excess and the red galaxy overdensity $rho_{cc}{=}-0.18$. This weak anti-correlation also successfully explains the observed dependence of HI clustering on $f_{gas}$. My method provides a useful framework for learning HI gas evolution from the synergy between future HI and optical galaxy surveys.
The SKA and its pathfinders will enable studies of HI emission at higher redshifts than ever before. In moving beyond the local Universe, this will require the use of cosmologically appropriate formulae that have traditionally been simplified to thei r low-redshift approximations. In this paper, we summarise some of the most important relations for tracing HI emission in the SKA era, and present an online calculator to assist in the planning and analysis of observations (hifi.icrar.org).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا