ﻻ يوجد ملخص باللغة العربية
We report a global effect induced by the local complex field, associated with the spin-exchange interaction. High-order exceptional point up to ($N+1$)-level coalescence is created at the critical local complex field applied to the $N$-size quantum spin chain. The ($N+1$)-order coalescent level is a saturated ferromagnetic ground state in the isotropic spin system. Remarkably, the final state always approaches the ground state for an arbitrary initial state with any number of spin flips; even if the initial state is orthogonal to the ground state. Furthermore, the switch of macroscopic magnetization is solely driven by the time and forms a hysteresis loop in the time domain. The retentivity and coercivity of the hysteresis loop mainly rely on the non-Hermiticity. Our findings highlight the cooperation of non-Hermiticity and the interaction in quantum spin system, suggest a dynamical framework to realize magnetization, and thus pave the way for the non-Hermitian quantum spin system.
We consider a 2D quantum spin model with ring-exchange interaction that has subsystem symmetries associated to conserved magnetization along rows and columns of a square lattice, which implies the conservation of the global dipole moment. In a certai
I study a spin system consisting of strongly coupled dimers which are in turn weakly coupled in a plane by zigzag interactions. The model can be viewed as the strong-coupling limit of a two-dimensional zigzag chain structure typical, e.g., for the $(
We introduce a Ramsey pulse scheme which extracts the non-Hermitian Hamiltonian associated to an arbitrary Lindblad dynamics. We propose a realted protocol to measure via interferometry a generalised Loschmidt echo of a generic state evolving in time
Recent years have seen a fascinating pollination of ideas from quantum theories to elastodynamics---a theory that phenomenologically describes the time-dependent macroscopic response of materials. Here, we open route to transfer additional tools from
We study the response of a thermal state of the Hubbard-like system to either global or local non-Hermitian perturbation, which coalesces the degenerate ground state within the $U(1)$ symmetry breaking phase. We show that the dynamical response of th