ﻻ يوجد ملخص باللغة العربية
We present a garbling scheme for quantum circuits, thus achieving a decomposable randomized encoding scheme for quantum computation. Specifically, we show how to compute an encoding of a given quantum circuit and quantum input, from which it is possible to derive the output of the computation and nothing else. In the classical setting, garbled circuits (and randomized encodings in general) are a versatile cryptographic tool with many applications such as secure multiparty computation, delegated computation, depth-reduction of cryptographic primitives, complexity lower-bounds, and more. However, a quantum analogue for garbling general circuits was not known prior to this work. We hope that our quantum randomized encoding scheme can similarly be useful for applications in quantum computing and cryptography. To illustrate the usefulness of quantum randomized encoding, we use it to design a conceptually-simple zero-knowledge (ZK) proof system for the complexity class $mathbf{QMA}$. Our protocol has the so-called $Sigma$ format with a single-bit challenge, and allows the inputs to be delayed to the last round. The only previously-known ZK $Sigma$-protocol for $mathbf{QMA}$ is due to Broadbent and Grilo (FOCS 2020), which does not have the aforementioned properties.
We study the notion of indistinguishability obfuscation for null quantum circuits (quantum null-iO). We present a construction assuming: - The quantum hardness of learning with errors (LWE). - Post-quantum indistinguishability obfuscation for classic
Virtual black-box obfuscation is a strong cryptographic primitive: it encrypts a circuit while maintaining its full input/output functionality. A remarkable result by Barak et al. (Crypto 2001) shows that a general obfuscator that obfuscates classica
The multiplicative depth of a logic network over the gate basis ${land, oplus, eg}$ is the largest number of $land$ gates on any path from a primary input to a primary output in the network. We describe a dynamic programming based logic synthesis al
In a recent breakthrough, Bravyi, Gosset and K{o}nig (BGK) [Science, 2018] proved that simulating constant depth quantum circuits takes classical circuits $Omega(log n)$ depth. In our paper, we first formalise their notion of simulation, which we cal
We consider the long-time limit of out-of-time-order correlators (OTOCs) in two classes of quantum lattice models with time evolution governed by local unitary quantum circuits and maximal butterfly velocity $v_{B} = 1$. Using a transfer matrix appro