ترغب بنشر مسار تعليمي؟ اضغط هنا

DocBank: A Benchmark Dataset for Document Layout Analysis

128   0   0.0 ( 0 )
 نشر من قبل Lei Cui
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Document layout analysis usually relies on computer vision models to understand documents while ignoring textual information that is vital to capture. Meanwhile, high quality labeled datasets with both visual and textual information are still insufficient. In this paper, we present textbf{DocBank}, a benchmark dataset that contains 500K document pages with fine-grained token-level annotations for document layout analysis. DocBank is constructed using a simple yet effective way with weak supervision from the LaTeX{} documents available on the arXiv.com. With DocBank, models from different modalities can be compared fairly and multi-modal approaches will be further investigated and boost the performance of document layout analysis. We build several strong baselines and manually split train/dev/test sets for evaluation. Experiment results show that models trained on DocBank accurately recognize the layout information for a variety of documents. The DocBank dataset is publicly available at url{https://github.com/doc-analysis/DocBank}.



قيم البحث

اقرأ أيضاً

Document layout comprises both structural and visual (eg. font-sizes) information that is vital but often ignored by machine learning models. The few existing models which do use layout information only consider textual contents, and overlook the exi stence of contents in other modalities such as images. Additionally, spatial interactions of presented contents in a layout were never really fully exploited. To bridge this gap, we parse a document into content blocks (eg. text, table, image) and propose a novel layout-aware multimodal hierarchical framework, LAMPreT, to model the blocks and the whole document. Our LAMPreT encodes each block with a multimodal transformer in the lower-level and aggregates the block-level representations and connections utilizing a specifically designed transformer at the higher-level. We design hierarchical pretraining objectives where the lower-level model is trained similarly to multimodal grounding models, and the higher-level model is trained with our proposed novel layout-aware objectives. We evaluate the proposed model on two layout-aware tasks -- text block filling and image suggestion and show the effectiveness of our proposed hierarchical architecture as well as pretraining techniques.
In this paper, we introduce MedLane -- a new human-annotated Medical Language translation dataset, to align professional medical sentences with layperson-understandable expressions. The dataset contains 12,801 training samples, 1,015 validation sampl es, and 1,016 testing samples. We then evaluate one naive and six deep learning-based approaches on the MedLane dataset, including directly copying, a statistical machine translation approach Moses, four neural machine translation approaches (i.e., the proposed PMBERT-MT model, Seq2Seq and its two variants), and a modified text summarization model PointerNet. To compare the results, we utilize eleven metrics, including three new measures specifically designed for this task. Finally, we discuss the limitations of MedLane and baselines, and point out possible research directions for this task.
416 - Xingjiao Wu , Tianlong Ma , Xin Li 2021
Document layout analysis (DLA) aims to divide a document image into different types of regions. DLA plays an important role in the document content understanding and information extraction systems. Exploring a method that can use less data for effect ive training contributes to the development of DLA. We consider a Human-in-the-loop (HITL) collaborative intelligence in the DLA. Our approach was inspired by the fact that the HITL push the model to learn from the unknown problems by adding a small amount of data based on knowledge. The HITL select key samples by using confidence. However, using confidence to find key samples is not suitable for DLA tasks. We propose the Key Samples Selection (KSS) method to find key samples in high-level tasks (semantic segmentation) more accurately through agent collaboration, effectively reducing costs. Once selected, these key samples are passed to human beings for active labeling, then the model will be updated with the labeled samples. Hence, we revisited the learning system from reinforcement learning and designed a sample-based agent update strategy, which effectively improves the agents ability to accept new samples. It achieves significant improvement results in two benchmarks (DSSE-200 (from 77.1% to 86.3%) and CS-150 (from 88.0% to 95.6%)) by using 10% of labeled data.
Transformer-based pre-training techniques of text and layout have proven effective in a number of document understanding tasks. Despite this success, multimodal pre-training models suffer from very high computational and memory costs. Motivated by hu man reading strategies, this paper presents Skim-Attention, a new attention mechanism that takes advantage of the structure of the document and its layout. Skim-Attention only attends to the 2-dimensional position of the words in a document. Our experiments show that Skim-Attention obtains a lower perplexity than prior works, while being more computationally efficient. Skim-Attention can be further combined with long-range Transformers to efficiently process long documents. We also show how Skim-Attention can be used off-the-shelf as a mask for any Pre-trained Language Model, allowing to improve their performance while restricting attention. Finally, we show the emergence of a document structure representation in Skim-Attention.
157 - Yiheng Xu , Minghao Li , Lei Cui 2019
Pre-training techniques have been verified successfully in a variety of NLP tasks in recent years. Despite the widespread use of pre-training models for NLP applications, they almost exclusively focus on text-level manipulation, while neglecting layo ut and style information that is vital for document image understanding. In this paper, we propose the textbf{LayoutLM} to jointly model interactions between text and layout information across scanned document images, which is beneficial for a great number of real-world document image understanding tasks such as information extraction from scanned documents. Furthermore, we also leverage image features to incorporate words visual information into LayoutLM. To the best of our knowledge, this is the first time that text and layout are jointly learned in a single framework for document-level pre-training. It achieves new state-of-the-art results in several downstream tasks, including form understanding (from 70.72 to 79.27), receipt understanding (from 94.02 to 95.24) and document image classification (from 93.07 to 94.42). The code and pre-trained LayoutLM models are publicly available at url{https://aka.ms/layoutlm}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا