ﻻ يوجد ملخص باللغة العربية
This paper presents a new model for the task of scene text visual question answering, in which questions about a given image can only be answered by reading and understanding scene text that is present in it. The proposed model is based on an attention mechanism that attends to multi-modal features conditioned to the question, allowing it to reason jointly about the textual and visual modalities in the scene. The output weights of this attention module over the grid of multi-modal spatial features are interpreted as the probability that a certain spatial location of the image contains the answer text the to the given question. Our experiments demonstrate competitive performance in two standard datasets. Furthermore, this paper provides a novel analysis of the ST-VQA dataset based on a human performance study.
Visual Question Answering (VQA) methods have made incredible progress, but suffer from a failure to generalize. This is visible in the fact that they are vulnerable to learning coincidental correlations in the data rather than deeper relations betwee
Text-based visual question answering (VQA) requires to read and understand text in an image to correctly answer a given question. However, most current methods simply add optical character recognition (OCR) tokens extracted from the image into the VQ
Visual Question Answering (VQA) is of tremendous interest to the research community with important applications such as aiding visually impaired users and image-based search. In this work, we explore the use of scene graphs for solving the VQA task.
Is it possible to develop an AI Pathologist to pass the board-certified examination of the American Board of Pathology (ABP)? To build such a system, three challenges need to be addressed. First, we need to create a visual question answering (VQA) da
Visual question answering requires a deep understanding of both images and natural language. However, most methods mainly focus on visual concept; such as the relationships between various objects. The limited use of object categories combined with t