ﻻ يوجد ملخص باللغة العربية
We consider the energy supercritical heat equation with the $(n-3)$-th Sobolev exponent begin{equation*} begin{cases} u_t=Delta u+u^{3},~&mbox{ in } Omegatimes (0,T), u(x,t)=u|_{partialOmega},~&mbox{ on } partialOmegatimes (0,T), u(x,0)=u_0(x),~&mbox{ in } Omega, end{cases} end{equation*} where $5leq nleq 7$, $Omega=R^n$ or $Omega subset R^n$ is a smooth, bounded domain enjoying special symmetries. We construct type II finite time blow-up solution $u(x,t)$ with the singularity taking place along an $(n-4)$-dimensional {em shrinking sphere} in $Omega$. More precisely, at leading order, the solution $u(x,t)$ is of the sharply scaled form $$u(x,t)approx la^{-1}(t)frac{2sqrt{2}}{1+left|frac{(r,z)-(xi_r(t),xi_z(t))}{la(t)}right|^2}$$ where $r=sqrt{x_1^2+cdots+x_{n-3}^2}$, $z=(x_{n-2},x_{n-1},x_n)$ with $x=(x_1,cdots,x_n)inOmega$. Moreover, the singularity location $$(xi_r(t),xi_z(t))sim (sqrt{2(n-4)(T-t)},z_0)~mbox{ as }~t earrow T,$$ for some fixed $z_0$, and the blow-up rate $$la(t)sim frac{T-t}{|log(T-t)|^2}~mbox{ as }~t earrow T.$$ This is a completely new phenomenon in the parabolic setting.
Consider the energy critical focusing wave equation on the Euclidian space. A blow-up type II solution of this equation is a solution which has finite time of existence but stays bounded in the energy space. The aim of this work is to exhibit univers
Following our previous paper in the radial case, we consider blow-up type II solutions to the energy-critical focusing wave equation. Let W be the unique radial positive stationary solution of the equation. Up to the symmetries of the equation, under
Let $OmegasubsetR^n$ be a smooth bounded domain and let $a_1,a_2,dots,a_{i_0}inOmega$, $widehat{Omega}=Omegasetminus{a_1,a_2,dots,a_{i_0}}$ and $widehat{R^n}=R^nsetminus{a_1,a_2,dots,a_{i_0}}$. We prove the existence of solution $u$ of the fast diffu
Let $nge 3$ and $0<m<frac{n-2}{n}$. We will extend the results of J.L. Vazquez and M. Winkler and prove the uniqueness of finite points blow-up solutions of the fast diffusion equation $u_t=Delta u^m$ in both bounded domains and $mathbb{R}^ntimes (0,
We give a sufficient condition for non-existence of global nonnegative mild solutions of the Cauchy problem for the semilinear heat equation $u = Lu + f(u)$ in $L^p(X,m)$ for $p in [1,infty)$, where $(X,m)$ is a $sigma$-finite measure space, $L$ is t