ﻻ يوجد ملخص باللغة العربية
Quantum Theory, similar to Relativity Theory, requires a new concept of space-time, imposed by a universal constant. While velocity of light $c$ not being infinite calls for a redefinition of space-time on large and cosmological scales, quantization of action in terms of a finite, i.e. non vanishing, universal constant $h$ requires a redefinition of space-time on very small scales. Most importantly, the classical notion of time, as one common continuous time variable and nature evolving continuously in time, has to be replaced by an infinite manifold of transition rates for discontinuous quantum transitions. The fundamental laws of quantum physics, commutation relations and quantum equations of motion, resulted from Max Borns recognition of the basic principle of quantum physics: {bf To each change in nature corresponds an integer number of quanta of action}. Action variables may only change by integer values of $h$, requiring all other physical quantities to change by discrete steps, quantum jumps. The mathematical implementation of this principle led to commutation relations and quantum equations of motion. The notion of point in space-time looses its physical significance; quantum uncertainties of time, position, just as any other physical quantity, are necessary consequences of quantization of action.
The concept of time as used in various applications and interpretations of quantum theory is briefly reviewed.
Via the proper-time eigenstates (event states) instead of the proper-mass eigenstates (particle states), free-motion time-of-arrival theory for massive spin-1/2 particles is developed at the level of quantum field theory. The approach is based on a p
Effective Field Theory (EFT) is the successful paradigm underlying modern theoretical physics, including the Core Theory of the Standard Model of particle physics plus Einsteins general relativity. I will argue that EFT grants us a unique insight: ea
The scalar field of extremal space-time film is considered as unified fundamental field. Metrical interaction between solitons-particles as gravitational interaction is considered here in approximation of a weak fundamental field. It is shown that th
Conventional optical synthesis, the manipulation of the phase and amplitude of spectral components to produce an optical pulse in different temporal modes, is revolutionizing ultrafast optical science and metrology. These technologies rely on the Fou