ترغب بنشر مسار تعليمي؟ اضغط هنا

A model for Dansgaard-Oeschger events and millennial-scale abrupt climate change without external forcing

159   0   0.0 ( 0 )
 نشر من قبل Georg Gottwald A.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Georg A. Gottwald




اسأل ChatGPT حول البحث

We propose a conceptual model which generates abrupt climate changes akin to Dansgaard-Oeschger events. In the model these abrupt climate changes are not triggered by external perturbations but rather emerge in a dynamic self-consistent model through complex interactions of the ocean, the atmosphere and an intermittent process. The abrupt climate changes are caused in our model by intermittencies in the sea-ice cover. The ocean is represented by a Stommel two-box model, the atmosphere by a Lorenz-84 model and the sea-ice cover by a deterministic approximation of correlated additive and multiplicative noise (CAM) process. The key dynamical ingredients of the model are given by stochastic limits of deterministic multi-scale systems and recent results in deterministic homogenisation theory. The deterministic model reproduces statistical features of actual ice-core data such as non-Gaussian $alpha$-stable behaviour. The proposed mechanism for abrupt millenial-scale climate change only relies on the existence of a quantity, which exhibits intermittent dynamics on an intermediate time scale. We consider as a particular mechanism intermittent sea-ice cover where the intermittency is generated by emergent atmospheric noise. However, other mechanisms such as freshwater influxes may also be formulated within the proposed framework.



قيم البحث

اقرأ أيضاً

Here we use a very simple conceptual model in an attempt to reduce essential parts of the complex nonlinearity of abrupt glacial climate changes (the so-called Dansgaard-Oeschger events) to a few simple principles, namely (i) a threshold process, (ii ) an overshooting in the stability of the system and (iii) a millennial-scale relaxation. By comparison with a so-called Earth system model of intermediate complexity (CLIMBER-2), in which the events represent oscillations between two climate states corresponding to two fundamentally different modes of deep-water formation in the North Atlantic, we demonstrate that the conceptual model captures fundamental aspects of the nonlinearity of the events in that model. We use the conceptual model in order to reproduce and reanalyse nonlinear resonance mechanisms that were already suggested in order to explain the characteristic time scale of Dansgaard-Oeschger events. In doing so we identify a new form of stochastic resonance (i.e. an overshooting stochastic resonance) and provide the first explicitly reported manifestation of ghost resonance in a geosystem, i.e. of a mechanism which could be relevant for other systems with thresholds and with multiple states of operation. Our work enables us to explicitly simulate realistic probability measures of Dansgaard-Oeschger events (e.g. waiting time distributions, which are a prerequisite for statistical analyses on the regularity of the events by means of Monte-Carlo simulations). We thus think that our study is an important advance in order to develop more adequate methods to test the statistical significance and the origin of the proposed glacial 1470-year climate cycle.
North Atlantic climate during glacial times was characterized by large-amplitude switchings, the Dansgaard-Oeschger (DO) events, with an apparent tendency to recur preferably in multiples of about 1470 years. Recent work interpreted these intervals a s resulting from a subharmonic response of a highly nonlinear system to quasi-periodic solar forcing plus noise. This hypothesis was challenged as inconsistent with the observed variability in the phase relation between proxies of solar activity and Greenland climate. Here we reject the claim of inconsistency by showing that this phase variability is a robust, generic feature of the nonlinear dynamics of DO events, as described by a model. This variability is expected from the fact that the events are threshold crossing events, resulting from a cooperative process between the periodic forcing and the noise. This process produces a fluctuating phase relation with the periodic forcing, consistent with proxies of solar activity and Greenland climate.
The impact of the El Ni~no-Southern Oscillation (ENSO) on the extratropics is investigated in an idealized, reduced-order model that has a tropical and an extratropical module. Unidirectional ENSO forcing is used to mimick the atmospheric bridge betw een the tropics and the extratropics. The variability of the coupled ocean-atmosphere extratropical module is then investigated through the analysis of its pullback attractors (PBAs). This analysis focuses on two types of ENSO forcing generated by the tropical module, one periodic and the other aperiodic. For a substantial range of the ENSO forcing, two chaotic PBAs are found to coexist for the same set of parameter values. Different types of extratropical low-frequency variability are associated with either PBA over the parameter ranges explored. For periodic ENSO forcing, the coexisting PBAs exhibit only weak nonlinear instability. For chaotic forcing, though, they are quite unstable and certain extratropical perturbations induce transitions between the two PBAs. These distinct stability properties may have profound consequences for extratropical climate predictions: in particular, ensemble averaging may no longer help isolate the low-frequency variability signal.
The Centre for Climate Change Research (CCCR;http://cccr.tropmet.res.in) at the Indian Institute of Tropical Meteorology (IITM; http://www.tropmet.res.in), Pune, launched in 2009 with the support of the Ministry of Earth Sciences (MoES), Government o f India, focuses on the development of new climate modelling capabilities in India and South Asia to address issues concerning the science of climate change. CCCR-IITM has the mandate of developing an Earth System Model and to make the regional climate projections. An important achievement was made by developing an Earth System Model at IITM, which is an important step towards understanding global and regional climate response to long-term climate variability and climate change. CCCR-IITM has also generated an ensemble of high resolution dynamically downscaled future projections of regional climate over South Asia and Indian monsoon, which are found useful for impact assessment studies and for quantifying uncertainties in the regional projections. A brief overview of these core climate change modeling activities of CCCR-IITM was presented in an Interim Report on Climate Change over India (available at http://cccr.tropmet.res.in/home/reports.jsp)
145 - Belolipetsky P.V. 2013
In this study we used the sea surface temperature (SST), El-Nino southern oscillation (ENSO) and Pacific decadal oscillation (PDO) time-series for the time period 1900-2012 in order to investigate plausible manifestation of sharp increases in tempera ture. It was found that the widely observed warming in the past century did not occur smoothly but sharply. This fact is more pronounced at the latitude zone 30S - 60N during the years 1925/1926 and 1987/1988. We hypothesise that there were two major climate regime shifts in 1925/1926 and 1987/1988 years. During these shifts the mean value of temperature rises, over which natural variability associated with ENSO, PDO and other factors occurs. During each sharp increase mean SST in tropics/north middle latitudes increased by about 0.28/0.36 {deg}C. Most of other temperature anomalies are explained by ENSO and PDO. The existence of these shifts tends to be masked by natural variability. This hypothesis has allowed us to develop very simple linear regression models which explain the main features of temperature anomalies from 30oS to 60oN observed in the past century. Additionally, two remarkable outcomes revealed from this analysis. The first one is that linear regression coefficients can be calculated by employing a limited length of the temperature time-series (e.g., from 1910 till 1940) and reproduce quite well the whole time-series from 1900 up to now. The second one is that a good quality of reproduction is achieved by using only two factors (ENSO/PDO and sharp changes for tropics/northern middle altitudes).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا