ﻻ يوجد ملخص باللغة العربية
We consider Anderson t-motives $M$ of dimension 2 and rank 4 defined by some simple explicit equations parameterized by $2times2$ matrices. We use methods of explicit calculation of $h^1(M)$ -- the dimension of their cohomology group $H^1(M)$ ( = the dimension of the lattice of their dual t-motive $M$) developed in our earlier paper. We calculate $h^1(M)$ for $M$ defined by all matrices having 0 on the diagonal, and by some other matrices. These methods permit to make analogous calculations for most (probably all) t-motives. $h^1$ of all Anderson t-motives $M$ under consideration satisfy the inequality $h^1(M)le4$, while in all known examples we have $h^1(M)=0,1,4$. Do exist $M$ of this type having $h^1=2,3$? We do not know, this is a subject of further research.
Let $M$ be an Anderson t-motive of dimension $n$ and rank $r$. Associated are two $Bbb F_q[T]$-modules $H^1(M)$, $H_1(M)$ of dimensions $h^1(M)$, $h_1(M)le r$ - analogs of $H^1(A,Bbb Z)$, $H_1(A,Bbb Z)$ for an abelian variety $A$. There is a theorem
Let $M$ be a T-motive. We introduce the notion of duality for $M$. Main results of the paper (we consider uniformizable $M$ over $F_q[T]$ of rank $r$, dimension $n$, whose nilpotent operator $N$ is 0): 1. Algebraic duality implies analytic duality
This paper extends the main result of the paper Duality of Anderson $t$-motives, that the lattice of the dual of a t-motive $M$ is the dual lattice of $M$, to the case when the nilpotent operator $N$ of $M$ is non-zero.
This is a survey on Anderson t-motives -- the functional field analogs of abelian varieties with multiplication by an imaginary quadratic field. We define their lattices, the group $H^1$, their tensor products and the duality functor. Some examples o
We establish the group-theoretic classification of Sato-Tate groups of self-dual motives of weight 3 with rational coefficients and Hodge numbers h^{3,0} = h^{2,1} = h^{1,2} = h^{0,3} = 1. We then describe families of motives that realize some of the